
Lecture 24
[Software]

Quality Assurance

Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

ソフトウェア

http://creativecommons.org/licenses/by-sa/4.0/

 What is quality?

 Software quality

 Software quality assurance (SQA)

 Software quality systems

 Consequences of
bad SQA

 Evolutionary model
of SQA in orgs

 Kaizen of software

 Formal Specifications

 General definition of quality:

It is a products ‘fitness of purpose’

A product is good quality if it does exactly
what the users wants it to do!

 ‘Fitness of purpose’

The system satisfies the
requirements as specified in
requirements document
(agreed contract)

requirements

A computer system (e.g. accounting program) that

- is functionally correct (e.g. accurately

records debits/credits)

- meets all the requirements as laid out in

the contract …

but one that

- is sometimes incredibly slow (takes 5 minutes or more

to complete a transaction)

- the user interface is very difficult to use takes days

for a new user to learn how to use it

- occasionally hangs for no reason

(but doesn’t loose/corrupt data) …

Is that Software Quality?

Software and product quality is not just about satisfying requirements,

it is also about…

Work with a buddy and decide at least 5 things besides satisfying

requirements that a quality system – or your YODA project – should provide.

Asked:
Software and product quality is not just about satisfying requirements,

it is also about…

Work with a buddy and decide at least 5 things besides satisfying

requirements that a quality system – or your YODA project – should provide.

The answer to this

question may also depend

on who you ask…

Software and product

quality is not just about

satisfying product

requirements and clients.

Not all the roles may have the same sense of what the top priorities are… but

generally, regards a good product, there may be many dimensions to that.

 Software quality is not just about
satisfying requirements, it is also about:
Correctness and

“The 7 desirable ‘ilities” :

1. Usability
2. Maintainability (incl. documentation)

3. Scalability / Extensibility
4. Reliability
5. Reusability
6. Securability (more formally ‘security’)

7. Portability

T

You should know what these 7 ilities are, read up if you don’t

 Software quality assurance is the:

Guidance/process for recognizing, defining,
analysing, and improving the software
production process.

It is achieved through a software quality
system

 Organizational responsibility

 Managerial structures

 Individual SQA Responsibilities

Auditing software projects
Establishing:
Standards
Procedures
Guidelines, etc.

Producing reports for high-level
management

Continuously review & refining
the organization’s quality system

Often quite specific to a

particular organization but

often based around published

recommended practices

 Effective quality system are well
documented

 Without a properly documented quality
system, application of quality procedures
become ad-hoc, results in large variations
in the quality of the products delivered*.

* Sadly this is commonly what happens to most hons and postgrad projects... because

there tends not to be enough time to learn or apply quality practices; imagine how

impressive out projects could become if there was sufficient time for this!!

 An undocumented/poor quality system:

Sends clear messages to the staff about the
organization’s attitude of quality assurance.

Can contribute towards project failure/delays

Can make maintenance impossible/expensive

Can leads to disagreements between staff

My code was

perfect, you

broke it!

Rubbish, no

one confirms

your story!

 The SQA of a particular organization
can usually be placed into the following
continuum of Software Quality Systems

1. Inspection

2. Quality Control (QC)

3. Quality Assurance (QA)

4. Total Quality Management (TQM)

unevolved

evolved

It’s up to you to decide where programmers are the happiest!

 Inspection
Check for defects and eliminate them

 Quality Control
Not just detect & eliminate defects…

Also determine causes behind defects

 Quality Assurance
Above + this basic premise:

If quality processes are good, and followed
rigorously, the products are bound to be good!

 Includes guidance for recognizing, defining,
analysing, and improving the production process

 Total Quality Management (TQM)

Continuous improvements to the quality
process through measurement and
refinement.

“Continuous Process Improvement”

There is a Japanize term for this … and people who strive toward

this ideal in their work are considered something like Samurai

Warriors (or like an ‘Iron Chef’) … the work is …

Kaizen :

The method of continuous incremental

improvements is an originally Japanese

management concept for incremental (gradual,

continuous) change towards improvement.

Kaizen is actually a way of life philosophy,

assuming that every aspect of our life

deserves to be constantly improved.

Samurai warriors strove towards the kaizen

of the warrior, that is to say they aimed to

become perfection in all areas of combat,

from the appearance of their armour, the

way they moved, to the mental preparation,

and physical preparation for strategy,

defensive tactics, striking skill, etc.

Toyota the huge automotive

giant proudly strives towards

the kaizen of automobile

manufacture

What would it take to strive towards the kaizen of HPEC system development?... Like a samurai, it takes much time & practice!

Formal Specification

Towards precision of

implementation meeting

the requirements

 In computer science Formal Specifications (FS) =
 Mathematically based techniques the purpose of which

is to help the implementation of a systems and its
software meet its requirements.

 Formal specifications are used to
 Describe a system
 Analyse its behaviour
 Aid the design by verifying key properties of interest

through rigorous and effective reasoning tools.

 These specifications are formal in that they have a
syntax and semantics that can be used to infer
useful information and formulate proofs.

 Why FS
 Computer systems have become increasingly more powerful and

integrated into society over the years, have impacted society and
the environment to an ever greater extent – people have become
more dependent on their computer systems

 Due to their increasing complexity and ubiquity, they have also
become more difficult to analyse, both their workings and their
impact on other systems.

 For these reasons methods are needed to more decisively, if not
undisputedly, reason and know that these systems will do what
they are supposed to do.

 Formal specifications are one such way to achieve this in
software engineering, particularly for applications where reliability
and predictability is paramount, and regimes of testing may not
be adequate – such as in medical systems and rocket control
modules where you want an unequivocal proof that the system
satisfy its requirements.

 To do FS properly, we would probably
need a whole course on it. So in this
course the concept is just introduced so
that you know about it, as FS is indeed
highly relevant to HPEC where these
types of systems are often used in
safety-critical applications.

 One thing I do want to delve into is the
concepts of pre- and postconditions…

 Often a programmer must needs to
describe exactly what a function needs to
accomplish, without any indication of how
the function does its work.

 i.e. you need to describe what the result
of the function will be, and conditions in
which it is expected to work, without
explaining in details (of a particular
programming language) what it does.

 One method to explain the operation of a
function without explaining its
implementation is using
Preconditions
A statement indicates what must be true

before the function is called.
Programmer needs to ensure the

precondition is valid when function is called
Postconditions
A statement indicates what will be true when

the function finishes its work.

Consider this disp_sqrt function.

void disp_sqrt (float x)

{

// calculate the square root and print the result to the stdout

}

OPTIONAL

supplementary reading

Consider the sqrt function.

We know that for negative x it should give imaginary numbers, but

assume that use of imaginary numbers are not possible by the

specification. So in that case, we can specify the post condition for the

function: that it will only work for non-zero numbers…

void disp_sqrt (float x)

{

// calculate the square root r and print this result to the stdout

}

OPTIONAL

supplementary reading

Consider the sqrt function.

We know that for negative x it should give imaginary numbers, but

assume that use of imaginary numbers are not possible by the

specification. So in that case, we can specify the post condition for the

function: that it will only work for non-zero numbers…

void disp_sqrt (float x)

{

// PRECONDITION: (x>=0)

// calculate the square root r and print this result to the stdout

}

We

could

add

OPTIONAL

supplementary reading

Consider the sqrt function.

What should happen after the function? It should come out with a result r

such that r*r = x, and print this result to the screen…

void disp_sqrt (float x)

{

// PRECONDITION: (x>=0)

// calculate the square root r and print this result to the stdout

}

OPTIONAL

supplementary reading

Consider the sqrt function.

What should happen after the function? It should come out with a result r

such that r*r = x, and print this result to the screen…

void disp_sqrt (float x)

{

// PRECONDITION: (x>=0)

// calculate the square root r and print this result to the stdout

// POSTCONDITION: (r * r = x) & has send data to stdout

}

OPTIONAL

supplementary reading

 The assert function can be used to
test conditions in a simple way

void disp_sqrt (float x)

{

assert(x>=0); // check precondition

// calculate the square root r and print this result to the stdout

assert(r*r==x); // check postcondition

}

How assert(val) works: if val is true, does nothing, if val is false then prints an

error that indicates the module file name, the line number and what val is.

e.g.

Assertion violation: file mysqrt.c, line 12: x <= 0

End of Slideshow

Image sources:

– Wikipedia open commons

Businessman juggling - Pixabay

Samurai, Kaizen Japanese lettering – sources include flickr and openclipart.org

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: What is Quality?
	Slide 4: Consider this
	Slide 5
	Slide 6
	Slide 7: Software (and generally product) Quality
	Slide 8: Software Quality Assurance (SQA)
	Slide 9: Software Quality System (SQS)
	Slide 10: Software Quality System Activities
	Slide 11: Software Quality System Activities
	Slide 12: Bad/Inconsistent SQA  Bad Attitudes and Behaviour
	Slide 13: Evolution of Quality Assurance
	Slide 14: The Levels
	Slide 15: The Levels
	Slide 16: Kaizen
	Slide 17
	Slide 18: Formal Specification
	Slide 19: Formal Specification
	Slide 20: Formal Specifications
	Slide 21: Preconditions and Postconditions
	Slide 22: Preconditions and Postconditions
	Slide 23: Preconditions and Postconditions Example
	Slide 24: Preconditions and Postconditions Example
	Slide 25: Preconditions and Postconditions Example
	Slide 26: Preconditions and Postconditions Example
	Slide 27: Preconditions and Postconditions Example
	Slide 28: Pre- and post-conditions in C
	Slide 29
	Slide 30

