
Lecture 23

HPES Development Process and
Management Aspects

Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Spiraling

to

success

* Relates to Martinez, Bond and Vai Ch 4.

http://creativecommons.org/licenses/by-sa/4.0/

Today’s theme –
HPES development process and methodology

– towards happy projects

 Where work is done, division of labour

 HPEC* management

 HPES development process

 Setting system objectives

 Costs & risks

 Monitoring progress

 Documentation

 Effort, Productivity
and Progress
(Optional extra slides re
intro to Doxygen)

*HPEC = High Performance Embedded Computer, term used by Martinez et al.

 Useful to consider ‘where work is done’ in relation to
Martinez et al.’s “canonical framework” (illustrated below)
that identifies key subsystems and components of a High
Performance Embedded Computing (HPEC) system…

 These projects many members of the development team,
involved at various levels of the system.

Where

would you

like to fit in?

 HPES system development is influenced
by the usual suspects:
requirement, plans, and implementation

decisions for the systems.

 There is likely separation between
significant subsystems, e.g. between
backend and frontend, as well as
between hardware and software.

 May draw on a range of experts from
various disciplines … (lets consider some …)

Application expects e.g.

Radar experts to advise on radar system
design & processing algorithms

Medical system experts to design on
standards, fault tolerance and safety
requirements

Masses of others…

 Application expects e.g.

 radar experts to advise on radar system design & processing algorithms

 Medical system experts to design on standards, fault tolerance and safety
requirements

Hardware specialists e.g.

Computer platform design experts

Radio Frequency (RF) experts for design of
the RF hardware

Experts to design of power supplies to
provide the power needed by the system

 Application expects e.g.

 radar experts to advise on radar system design & processing algorithms

 Medical system experts to design on standards, fault tolerance and safety
requirements

 Hardware specialists e.g.

 Computer platform design experts

 Radio Frequency (RF) experts for design of the RF hardware

 Experts to design of power supplies to provide the power needed by the
system

Software & HDL specialists e.g.

Personnel experienced in high performance
signal processing

 And these individuals need to work
effectively together on the system being
constructed…

 Manager
 Team leader
 Hardware designer
 Software designer
 Implementer / Programmer
 Engineering Technician
 Test Designer, Test Analyst
 Tester
 Tool specialist
 Documentation writer
 Librarian

These are also some ideas for

the roles you might give team

members in the YODA project

 The management of the development must be
tailored to meet the particular technology choices,
which could comprise a variety of technologies and
tools…

 Each technology has its own development cycle,
cost, technical limitations, and risks. E.g.:
 Developing a custom ASIC

 tends to slow down the implementation.
Could have high risk (e.g. cannot afford more than one

run prior to initial release);
Need strategies to mitigate these potential risks (e.g.

backup plan of using an FPGA)
 Programmable processors

also have various risks (e.g. licensing tools, what
happens if they go out of production).

HPES Development

Process
EEE4120F

 Commonly planned broadly with the waterfall
model in mind to cover all needed steps

 Relevant to both the
software and hardware
aspects of the system

 In practice
 The spiral model provides a

better guide to HPES projects
overall, with the waterfall
model being applicable to
iterations of HW/SW
development within cycles
of the spiral model Classic representation of the

Waterfall model

 As per general development projects, HPES,
Reconfigurable and High-performance computing
systems tend to follow the Spiral Model (Bloehm
1988) with phases of…

Main phases

of development

(usually starts with

requirements; the

subsequent

iterations start with a

requirements review

and deciding what

next to do.)

Starting small (i.e. start

from centre of spiral and

expand out) with little

risk. Adding features and

mitigating risk with each

additional iteration.

Review

Design and

Implementation

Testing /

Release /

Planning

Analysis

A spiral* model overview of development

* B. W. Boehm, “A spiral model of software development and enhancement,” Computer, vol. 21, pp. 61-72, 1988.

Spiral model (Boehm, 1988)

See discussion in Martinez, Bond and Vai, 2008, “High Performance Embedded Computing Handbook”, CSC Press, pg 43.

Image from Wikipedia open commons

More detailed

classic model.

When does it

end?

Each cycle

begins with the

identification of

the objective of

the portion of

the product

to be elaborated

 Objectives of each cycle
 specified in terms of the overall system into which the

computing resource/processing is to be incorporated

 In early stages of the process
 System objectives are usually more in terms of

algorithms and processing needed (see next slide).

 Subsequent stages (after a few iterations)
 More high-level design and experimental rapid prototyping of

subsystems (e.g. writing a rough C routine version of a
decided upon algorithm to evaluate its performance)

 Later stages (after a good understanding of processing
needs and algorithms to use)
 More focused on hardware subsystems fabrication
 Software implementation
 Testing

 Final stage(s)
 Preparing and performing acceptance test(s)
 Installation and post installation maintenance

 Functional requirements
 What the system should do
 Operations to perform
 Input → Output relations

 Use cases (to be satisfied)

 Non-functional requirements
 The ‘ilities’
Availability, Scalability, Reliability, Reusability,

Maintainability
 Performance
Speed of operation, throughput, response time

(max. latencies)
 Size, Weight, And Power (SWAP)

 In the early cycles, the goal is typically: reduce the
largest technical risks and initiate lengthy tasks that
may influence the overall (contractual) schedule.
 If can’t eliminate big risks need to reconsider continuing

 Some common risks addressed in early cycles of
HPES development:
 Form-factor constraints
 Algorithm and functional uncertainty
 Synchronization and control (exploiting regularity of data

flow in computation)
 Software complexity
 Selecting COTS components
 Custom ASIC design (high volume production only)

 Once the requirements, alternatives, and
constraints are established, risk analysis is
performed.

 Once development has progressed
successfully, it should be feasible to retire
certain risks at a Plan (stage 4) iteration

 At this point, management may review
the cost of the previous cycle, scheduling
of the next iteration and also revise the
overall costing and development timeline.

Monitoring development

progress & productivity
EEE4120F

 An important management tasks for
HPES projects is developing accurate
estimates for, and ways to measure
development ‘PECS’:
Progress
Effort
Cost and
Schedule

 This may need to be tailored according to
activities and types of technologies used
during the project e.g.
MATLAB/Simulink coding vs. C coding vs.

Assembly coding vs. FPGA HDL coding

 Need ways to measure both
performance and progress for

Hardware development progress and

Software development progress

Hardware design progress
EEE4120F

 A often mentioned method:

Determining the number of transistors,
components and interconnects used in a
design…

… surely that will give you a good impression

of where the design is at?

Do you think this is a valid and fair approach?

 Not necessarily
 The graph on left shows

number of transistors vs.
weeks of design effort

 As can be seen there
may be little correlation in
number of components in a
design to amount of effort

 Consider further there are usually cycles of design-test-
optimization, so over time there may be increases and
decreases in components used

 But agreeably it is likely the number of components
will increase over long time periods when looking at
one project

 It is better to consider the completion of functional
units (or required functionality)

* Numetrics Management Systems (2000) “Measuring IC and ASIC Design Productivity”

 Factors indicating progress
 Requirements/Specifications provided
 Number subsystems completed
 Functionality completed (i.e. not looking necessarily in

relation to specific requirements but more functions
given, e.g. counter added to design)

 System complexity (interconnects & modules)
 Design size
 IP usage

 Considered in relation to
 Technology/tools used
 Application domain
 Frequency/speed of operation (e.g. high frequency,

faster systems are more difficult to build)

Based on http://www.eetimes.com/document.asp?doc_id=1276032

http://www.eetimes.com/document.asp?doc_id=1276032

 Two aspects of system design complexity*
Structural design complexity
Depth of hierarchies
Number of components
Number of connections
Interconnections between components

Functional design complexity
Number of functions provided
Complexity of the functions (e.g. symbols

needed to describe the operation)
Sophistication of communication,

handshaking protocols, flow control
Data management

* Dan Braha and Oded Maimon, 1998, “The Measurement of a Design Structural and Functional Complexity” In IEEE Transactions On Systems, Man, and Cybernetics

Simple

More complex

 Cyclomatic complexity is a software
metric (measurement), used to indicate
the complexity of a code section (or whole
program). It is a quantitative measure of
the number of linearly independent paths
through a program's source code.

Read more about it at: https://en.wikipedia.org/wiki/Cyclomatic_complexity

The approach is usually to think of (or visualize) the code section of interest

as a graph, relating separable blocks of closely interdependent sequenced

code (see next slide).

Good introductory starting point if you want to get more into this technique:

https://www.geeksforgeeks.org/cyclomatic-complexity/ (recommended tut)

more in-depth: https://dev.to/designpuddle/coding-concepts---cyclomatic-complexity-3blk

https://en.wikipedia.org/wiki/Software_metric
https://en.wikipedia.org/wiki/Software_metric
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://www.geeksforgeeks.org/cyclomatic-complexity/
https://dev.to/designpuddle/coding-concepts---cyclomatic-complexity-3blk

Considers design as a graph representation.
Uses the formula of “cyclomatic complexity”,

which is as follows:

M = V(G) = e – n + 2p

where:
V(G) = cyclomatic number of Graph G
e = number of edges
n = number of nodes
p = number of separate connected
components* of the graph (or system**)

McCabe, 1976
** The graph represents the system being designed, although it could be extended to the ‘development’

system, i.e. people working on different parts using possibly different tools.

(2p as connections between parts

potentially more difficult to manage and

design around that individual parts)

*Connected components can be considered blocks of the code that are separated from the main sequence (e.g. the ‘then’

code that runs of when an if condition is true, an if causes a 1-part component separation).

 Need to find the linearly independent
paths in the code section

 Usually done using the control flow
graph of the program… essentially
separating the part before the IF, and
the two options after the IF (which
might be doing an operation, or not
doing the operation if there’s no ELSE).

 See example on next slide

 Example block of code to consider:
void main ()

{

int a = 100;

if (a > c)

a = b;

else

a = c;

printf(“%d %d %d”,a,b,c);

}

start

a=100

a>c

a=b a=c

Print

a,b,c

stop

As can be seen in the flow graph (or a flow chart)

there are:

n = 7 nodes (we’re including start and stop, don’t have to),

e = 7 edges (including links to start and stop, don’t have to).

p = 1 connected component (i.e. The if splitting

the path into two options)

using M = e – n + 2p

M = 7 – 7 + 2(1) = 2

 Example block of code to consider:

if (a == 10){

if (b > c) // nested loop

a = b

else

a = c

}

printf(“%d %d %d”,a,b,c);

As can be seen in the flow graph there are:

n = 8 nodes (we’re including start and stop, don’t have to),

e = 9 edges (including links to start and stop, don’t have to).

p = 1 connected component

using M = e – n + 2p

M = 9 – 8 + 2(1) = 3

Flow chart developed using https://app.code2flow.com/

flow graph of code on left

https://app.code2flow.com/

 Design productivity gap:

The difference between the transistors
(resources) available in a single semiconductor
die and the ability for the transistors to be
used effectively in a design

P
ro

d
u

c
tiv

ity
 in

K
 tra

n
s
is

to
rs

/s
ta

ff m
e

m
b

e
r

• 1980s leading chip needing

100 transistors/month *

• 2002 leading chip needing

30,000 transistors/month *

* Vahid, Frank, and Tony Givargis. Embedded system design: a unified hardware/software introduction. Vol. 52. New York: Wiley, 2002.

Can (to some extent)

substitute vertical axis

for complexity of the

system

Software design progress
EEE4120F

 Usual (easy) approach:
Measuring Lines Of Code (LOC) is one way

 SLOC: a possible improvement (mentioned
in seminar 2)
SLOC = non-blank, non-comment source lines

of code (SLOC) : some relation to the
complexity of the code

 Potential inaccuracies and unfairness?
Well documented code is typically considered

more valuable and reusable… but taking longer
to get a solution could cause a product to fail.

… (next slide) …

 Potential inaccuracies and unfairness of using
SLOC to measure progress / performance …
 May have sudden needs for large blocks of code to be

provided due to library limitations or incompatibility
(e.g. textbook example, needing to fill in functions that
were expected to be in the library)

 Commented code is often better (and possibly easier to
understand and share) than uncommented code.

 Some difficult problems may have a short but non-
obvious answer (e.g. coding a FIR filter)

 Some easy problems may have a long and obvious
answer (e.g. GUI code)

 Some development tasks end in dead ends not
contributing to the final design
Code/design may be thrown away

 Some development tasks might be the result of a lot of
learning (and the design team gaining skills) but having
slower code production

 Size of application
 Function points: measuring the

functionality offered by a system
 Average number LOC between bugs
 Coupling (of classes, functions)

Measure of the strength of association
between different entities

 Cohesion
Degree to which methods in a class (or

functions in a module) are related to each
other

Various other OO metrics can be considered, not included or examined in this course

 Function Points gauge the functionality
offered by a system

 A function can be defined as a
collection of executable statements that
performs a certain task

 Function points can be calculated
before a system is developed

 They are language and developer
independent (could apply to C / Java /
Python / assembly / HDL)

 A function point count is calculated as a
weighted total of five major components that
comprise an application, these are:
 External Inputs

 External Outputs

 Logical Internal Files/modules

 External Interface Files – files accessed by the
application but not maintained by it

 External Inquiries – types of online inquiries
supported

 A simple way to calculate a function
point count is as follows:

Function point count (or fpc) =
(Number of external inputs x 4) +

(Number of external outputs x 5) +

(Number of logical internal files x 10) +

(Number of external interface files x 7) +

(Number of external enquiries x 4)

These weightings are decided based on the degree of complexity of the

development

Quick Class Activity:

Function Points Calculation

Build a system that allows customers to submit
product ratings of company X. These ratings
will be stored in a file and company X staff will
receive daily updates with new ratings.
Customers can subscribe to weekly updates of
product ratings that were submitted.
Management can query the system for a
summary of product ratings for a particular
period.

External Inputs

External Outputs

Logical Internal Files

External Enquiries

See handout

Quick Class Activity:

Function Points Calculation

Build a system that allows customers to
of company X. These

ratings will be and company X
staff will with new
ratings. Customers can subscribe to

that were
submitted. Management

for a
particular period.

1

2

External Inputs

External Outputs

1 Logical Internal Files

1 External Enquiries

Functional Point Count calculation:

External Inputs: 1

External Outputs: 2

Logical Internal Files: 1

External Interface Files: 0

External Enquiries: 1

∴Function Point Count = (1x4) + (2x5) +
(1x10) + (0x7) +(1x4) = 28

For individual developers or teams:

 Cost per Function Point

 Mean Time required to develop a
Function Point

 Defects produced per hour

 Defects produced per function point

This is probably not used much in industry at present, but things are

moving towards this direction. In my view it seems draconian and

doesn’t allow for how varied development work, especially embedded

systems development, can be. Maybe for more straightforward

programming (e.g. simpler web service development) it could be

applicable. Basic moral of the story: don’t tell the managers because

they might just like this, and we likely would not!

Spiral of Project ManagementEric Taylor Music - royalty free tracks

https://www.youtube.com/watch?v=gdJIE9lzNIQ

https://www.youtube.com/watch?v=gdJIE9lzNIQ

 The original Functional Points (shown in
previous slides) are adequate for many
applications

 However these have been extended for
specialized domains (e.g. embedded
systems) where the weightings need
adjustment due to the nature and
complexity of the applications developed.

 Development effort, productivity and
progress are not all the same thing

 Effort = amount of time involved (person
hours; this is a simplistic view of effort)

 Productivity = rate of progress (high
productivity → progress happening
quickly)

 Progress = extent to which the desired
objectives are complete (measured usually
in terms of functionality provided and
requirements satisfied)

 Some tasks need more effort than others
to gain a desired level of productivity

 Tools, programming language, prior
knowledge, learning aptitude (among
many other factors) can all clearly
impact this significantly

 The expressive power of a language can
influence the productivity achieve by
using that language…

E
x
p

re
s
s
iv

e

P

o
w

e
r

Often there is a tradeoff

between the expressive

power of a language and its

efficiency. For example

according to the study by

Kennedy et al. they

demonstrated how certain

commonly used languages

can have noticeable

tradeoffs between the

expressive power

Kennedy, K., Koelbel, C., Schreiber, R., Kennedy, K., Koelbel, C., and Schreiber, R. Defining and measuring the productivity of programming

languages. The International Journal of High Performance Computing Applications, (18)4, Winter 2004 (2004), 441–448.

 Expressive Power = ability of a language to provide
advanced primitives and constructs to reduce the
amount of effort required to program a solution

Might be the

“silver bullet”

of software

development

 The Mythical Man-Month * also known
as “Brooks's law”:

Central theme is adding manpower to a
late project makes it even later…

 The second-system effect *:

The tendency of small, elegant, and
successful systems to be plagued with
feature creep due to inflated expectations.

* Brooks, Jr., Frederick P. (December 2006) [1975]. "The Second-System Effect". The Mythical Man-Month: essays on software

engineering (Anniversary ed.). Addison Wesley Longman. p. 53. ISBN 0-201-83595-9.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-83595-9

 Documentation is important for the
reuse and maintainability of designs

 A major barrier to reuse is lacking or
poor documentation (the web is full of
useful code libraries suffering from this)

 Automated documentation generation
tools are a means to save time and
improve the accuracy of design
documents, such as use of Doxygen

 Please ready through the rest of CH4
on your own. We’ve already seen much
of what is said there, and experienced
simplified instances of the development
issues in pracs.

The slides that follow is a brief discussion of automated documentation

generation using the Doxygen tool, it is optional reading and can be

skipped for test purposes

Doxygen
EEE4120F

These slides are aimed more at additional

reading and for application to Prac4 in which a

brief intro to Doxygen is given.

 Doxygen is a highly recommended tool for generating
code documentation from comments in the code.

 It is a documentation system for C, C++, Java, among
other programming languages.

 It helps to
 Generate on-line or offline reference manuals from

commented source files.
 Extracting the code structure and visualising relations

between software components using dependency graphs,
and various UML modelling techniques such as inheritance
diagrams, and collaboration diagrams that are generated
automatically.

 NOTE: This doesn’t mean to say you can skip the software
design phase of development but it can help synchronize
what your implementation becomes with its design
visualization

 Doxygen website

http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/

 Initial setup
Step 1: Create a Configuration File
Doxywizard is a GUI program for creating the

config file
Construct templates (to copy and paste to

save typing)

 Following cycle repeats:
Step 2: Document the Code
Step 3: Run the Doxygen

 Don’t usually run doxygen for each
compile in code-compile-test cycle as it
can take a while to complete.

• Techniques for documenting

• Code blocks or lines

• Functions / member functions

• Classes and structures

• Class attributes

• Code structures (e.g. for loop, if then else)

• Doxygen comments start with a * or !

• Examples:

/** description of function. */

/*! Another description */

//! Another Doxygen comment

/// Also Doxygen comment with 3 x ‘/’

int var1; //! Document member or variable

/*** Document function,

at top of declaration */

void myfunc (int a, int b)

{

}

 Bulleted lists
Unnumbered:

Use a column aligned minus sign –

Numbered
Use a column aligned minus sign –

followed by a # (i.e. -# blurb)

Nested lists: indent the – or -#

 Arbitrary HTML code can be added
HTML commands (e.g. blurb)

can be used inside comment blocks

/**

* List of items

* -Top level issue A

* -#Sub issue one

* -#Sub issue two \n

* another line for issue two.

* -#Sub issue 3

* -Top level issue B

-#Sub issue one of B

* -Top level issue C

*/

 These slides were meant as a brief
into, for more details on Doxygen
commands and syntax please see the
Doxygen online manual

http://doxygen.nl/manual.html

http://doxygen.nl/manual.html

General causes making a…

OR

 Requirements Analysis
 Nothing recorded / no written

requirements

 Requirements vague or insufficiently described

 Leaving it ‘till too late to actually formalize requirements

 No directions on user interface

 No end-user involvement (occasionally difficult to organize)

 Design
 Insufficient design and planning done

 No documents (or poorly formed)

 Inefficient data structures / file formats

 Infrequent or no design reviews

 Lack of consultation/input from experts and senior
engineering staff

You? Poorly Planned Project?

 Implementation
 Lack of, or insufficient coding standards (incl.

inconsistent coding style etc.)

 Infrequent or no code reviews

Poor in-line code documentation

 Subsystem/component testing & Integration
 Insufficient component testing

 Incomplete testing or
running ineffective tests

No quality assurance

 How can we avoid making the mistakes that lead to
project failure? Besides the obvious point of having
competent staff?

 Apparently* the answer is simply:

 By using “simple common sense… which
is often ignored in systems projects.”*

 Need the three pillars of success:
 A sound methodology

 Solid technical leadership by someone
who’s successfully done a similar project

 Management support

* M. I. Sanchez-Segura, J. García, A. Amescua, F. Medina-Dominguez, and A. Mora-Soto, “A Study on How Software Engineering Supports

Projects Management,” Innovative Techniques in Instruction Technology, E-learning, E-assessment, and Education, pp. 161-165, 2008.

(a likely question or bonus question)

Class Activity on

Development Process
EEE4120F

 Keep in mind the main recurring phases of
the spiral model:

Review

Testing and

Planning of

next iteration

Analysis

Design /

implementation /

prototype

Consider that you are embarking on a project that involves developing a face

recognition system for The Hawks *. The system is accessed via possibly (very

low budget) workstation PCs, which are used to upload photos to a remote

central computing site where the face recognition functions are run. The central

computing site comprises a fast PC with one or more digital accelerator to do the

main number crunching. (to next slide..)

* The Hawks, officially called the ‘Police's Directorate for

Priority Crime Investigation’, is the South African current

take on the US’s version of the FBI.

Face detection (green boxes) followed by face identification

Image source – Wikipedia open commons

 Form into groups to discussion:

How would the first step of the spiral
model be carried out for the face
recognition system

What are some of the risks to content with
for the first thing to carry out

What would you do to test and analyse the
results (if applicable)

What would the next cycle involve?

End of Slideshow

Image sources:

Face identification image; crowd scene – Wikipedia open commons

Group task image – OpenClipart.org

Human thinking, man clicking - Pixabay

Sunset – flickr open commons

Composite project success image – sources include flickr and openclipart.org

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

	Default Section
	Slide 1
	Slide 2
	Slide 3: Lecture Overview
	Slide 4: HPEC System – where work is done
	Slide 5: HPES Design: Personnel and Division of Labour
	Slide 6: HPES Design: Personnel and Division of Labour
	Slide 7: HPES Design: Personnel and Division of Labour
	Slide 8: HPES Design: Personnel and Division of Labour
	Slide 9: Roles for division of labour
	Slide 10: HPES Management
	Slide 11: HPES Development Process
	Slide 12: HPES Process Model
	Slide 13: Spiral Model: the natural way
	Slide 14: Spiral model (Boehm, 1988)
	Slide 15: HPES System Objectives
	Slide 16: System level goals
	Slide 17: Goals of the Early Cycles
	Slide 18: Costing and Risk management
	Slide 19: Monitoring development progress & productivity
	Slide 20: Monitoring progress
	Slide 21: Monitoring productivity/progress
	Slide 22: Hardware design progress
	Slide 23: Hardware progress
	Slide 24: Hardware progress
	Slide 25: Hardware progress
	Slide 26: Design Complexity Measures

	Cyclomatic Complexity
	Slide 27: Cyclomatic Complexity
	Slide 28: McCabe’s Cyclomatic Complexity Metric
	Slide 29: Cyclomatic Complexity Metric
	Slide 30: Cyclomatic Complexity Metric – Example 1
	Slide 31: Cyclomatic Complexity Metric – Example 1

	Design Productivity
	Slide 32: Design Productivity Gap
	Slide 33: Software design progress
	Slide 34: Monitoring progress of software
	Slide 35: Difficulty of monitoring progress based on LOC
	Slide 36: Monitoring software progress
	Slide 37: Function Points (my preferred metric)
	Slide 38: Function Points
	Slide 39: Calculating a Function Point
	Slide 40
	Slide 41: Function Point Example
	Slide 42
	Slide 43: Function Point Example
	Slide 44: Functional Points Example (cont.)
	Slide 45: Future Productivity Measurement
	Slide 46
	Slide 47: Functional Point Extensions
	Slide 48: Effort, Productivity and Progress
	Slide 49: Issues of Effort & Productivity
	Slide 50: Expressive Power vs Developer Efficiency
	Slide 51: Mythical man month
	Slide 52: Documentation
	Slide 53: Processes and trends
	Slide 54: Doxygen
	Slide 55: Doxygen – code documentation tool
	Slide 56: Where to get Doxygen
	Slide 57: Using Doxygen
	Slide 58: How to use Doxygen
	Slide 59: How to use Doxygen
	Slide 60: Documenting code
	Slide 61: Doxygen formatting
	Slide 62: Doxygen list example
	Slide 63: Doxygen
	Slide 64
	Slide 65: Common causes of failure
	Slide 66: Common causes of failure
	Slide 67: Most common cause of success??
	Slide 68: Class Activity on Development Process
	Slide 69: Reflections – short activity
	Slide 70: Todo – group task
	Slide 71
	Slide 72

