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 Memory Control Units (part 2 of 2)

Dual-port memory control unit

Setting up memory in code & simulation

FIFO and LIFO memory modules

 On-chip Interfacing Standards*

Wishbone

The Altera/Intel 
Avalon Bus

* The topics on these two commonly used interfacing 

standards are optional (supplementary reading) this year



Memory Controllers
(part 2 of 2)
EEE4120F



clk

Half-duplex

Dual-port

Memory

This is a usual (implicit handshaking) interface for a memory control unit

Explanation of ports:

clk : clock input

w_addr, w_data : write address and data

r_addr, r_data : read data address and data

we, re   : write enable, read enable 

cs    : chip select  (i.e. chip ignores inputs if cs=0)

w_addr

we

cs

Note:

• The cs port isn’t necessarily needed.

• You could simplify this to dropping the 

re and we (assume always active) 

and use instead a cs line to decide 

whether or not to activate the module.

• This module allows up to one read 

and one write simultaneously

• It is undefined what the r_data will be 

if you try and write and read at the 

same time to the same address (the 

w_data will get written to the location 

but the returned read value might be 

the old or the new value)

w_data
/

/

r_addr /

re

r_data/

https://www.edaplayground.com/x/4eSi

https://www.edaplayground.com/x/4eSi


// a simple dual-port RAM in Verilog

// Test in EDAPlayground at: https://www.edaplayground.com/x/4eSi

module hdp_ram (

clk ,   // clock input

we     ,   // write enable

w_addr ,   // write address

w_data ,   // write data

re     ,   // read enable 

r_addr ,   // read address

cs     ,   // chip select (i.e. chip ignores inputs if cs=0)

r_data // output for read operation

);

// Setup some parameters

parameter DATA_WIDTH = 8;  // word size of the memory

parameter ADDR_WIDTH = 8;  // number of memory words, e.g. 2^8-1

parameter RAM_DEPTH  = 1 << ADDR_WIDTH;

// Define inputs

input clk, we, re, cs;

input  [ADDR_WIDTH-1:0] r_addr, w_addr;

input  [DATA_WIDTH-1:0] w_data;

output reg [DATA_WIDTH-1:0] r_data;

// Private registers

reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1]; // Set up the memory array

// Write to or read from memory

always@ (posedge clk)

begin

if (cs)

begin

if (we) mem[w_addr] <= w_data;

if (re) r_data <= mem[r_addr];

end

end

endmodule

As you can see, the implementation 

is easier than the single port MCU 

as it does not need to use a inout

tristate port for the data.

https://www.edaplayground.com/x/4eSi

https://www.edaplayground.com/x/4eSi


// EEE4120F Memory Control Unit Example

// Testbench for the dual port dp_ram RAM control memory unit

module hdp_ram_tb ();  

reg  clk, cs, we, re;

reg  [7:0] w_data;  // this is the connection to dp_ram write data port

reg  [7:0] w_addr;  // address to write to

reg  [7:0] r_addr;  // address to read from

wire [7:0] r_data;  // link to data returned on a read

// Instantiate the module to be tested

hdp_ram hdp_ram_uut(clk,we,w_addr,w_data,re,r_addr,cs,r_data);

initial begin  

// set up initial conditions

clk = 0; cs    = 0; we    = 1;

re    = 0; r_addr= 1; w_addr= 1;

w_data= 100;

$display("clk cs we re raddr waddr rdata wdata");

$monitor("%b   %b  %b  %b  %03d   %03d   %03d   %03d",

clk,cs,we,re,r_addr,w_addr,r_data,w_data);

// set up to write to 100 to [1] and disable read:

cs <= 1; #5 $display("write 100 to [1]");  // (the #5 is here to force the display output)

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse

re <= 1; w_addr <= 2; w_data <= 101;

#5 $display("write 101 to [2] and read from 1");

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse

end 

endmodule https://www.edaplayground.com/x/4eSi

https://www.edaplayground.com/x/4eSi


clk

Full-duplex

Dual-port

Memory

This is basically like the dual port memory, but it has a write enable for both data ports, 

and separate datain and dataout ports so that a dual read or write can be done.

Explanation of ports:

clk : clock input

a_we, b_we: write enable/read enable for a,b

a_addr, b_addr : address for channel a and b

a_wdata, b_wdata : data to write for a,b if we=1

a_rdata, b_rdata : data read for a,b if we=0

cs    : chip select  (i.e. chip ignores inputs if cs=0)

a_addr

a_we

cs

Note:

• This module supports reading or 

writing to memory channel a or b at 

the same time.

a_wdata
/
/

a_rdata/

https://www.edaplayground.com/x/64Vt

b_rdata/

b_addr
b_we

b_wdata
/
/

The code for this is fairly easy 

to construct using the previous 

examples. See below link to 

access the code.

https://www.edaplayground.com/x/64Vt


clk

Bidirectional

Dual-port

Memory

This is basically like the dual port memory, but it has a write enable for both data ports, 

and separate datain and dataout ports so that a dual read or write can be done.

Explanation of ports:

clk : clock input

a_we, b_we: write enable/read enable for a,b

a_addr, b_addr : address for channel a and b

a_data, b_data : data to write/read for a,b

cs    : chip select  (i.e. chip ignores inputs if cs=0)

a_addr

a_we

cs

Note:

• This module supports reading or 

writing to either memory channel a or 

b at the same time

a_data
/
/

b_addr
b_we

b_data
/
/

The code for this is fairly easy 

to construct using the earlier 

examples of single-port and 

half-duplex ram. A link to a 

completed example is below:

https://www.edaplayground.com/x/5d3t

https://www.edaplayground.com/x/5d3t


FIFOs and LIFOs
(a specialized type of memory)

EEE4120F



 First In First Out (FIFO)

These are useful for I/O buffering, e.g. for 
streaming data from serial

 Last In First Out (LIFO) or stack

A stack can be used similarly to how it is 
used in software, or to sequences 
operations (e.g. reverse polish calculator).



clk

Synchronized

FIFO

data_out

cs

/

module sfifo (

clk , // Clock input

reset    , // high reset

cs       , // chip select

rd_en , // read enable

wr_en , // write enable

data_in , // data input

data_out , // data output

empty    , // FIFO empty

full       // FIFO full

);

reset

rd_en

wr_en

data_in

empty

full

The module would be designed around a 

certain size, e.g.:

// 4-element memory array for fifo queue

reg [7:0] fifomem [0:3]; 

The working of the module would be as expected, the empty 

line will be high when no data is in the queue, and full will be 

high when the queue is full. A head and tail wrapping index 

would likely be used. But, when the queue is full and a new 

item is added, the head and tail would both need to increment 

to make the last item ‘fall’ out of the queue.

FIFO structure



https://www.fpga4student.com/2017/01/verilog-code-for-fifo-memory.html

See example code at:

https://opencores.org/projects/generic_fifos

Notes on comms: if you are just sending data, and not at a very fast rate, then 

you probably do not need to worry with a FIFO, to save space. But if you are 

streaming serial data, where it is a problem to have the accastional missing 

byte, then you will probably want a FIFO – and likely handshaking logic if not 

flow control to avoid the potential for data being lost.

https://www.fpga4student.com/2017/01/verilog-code-for-fifo-memory.html
https://opencores.org/projects/generic_fifos


The module can use the same interface as a FIFO, it’s just that 

the internal workings will be such that input will be extracted in 

the reverse order that they are put into the stack. A top index (as 

apposed to a head and tail) would be used. Like the FIFO, the 

most recent addition is typically the most desirable to keep when 

the stack is full, so the top pointer will just continue being 

incremented (wrapping at the last address) which will keep the 

most recent data in the stack.

clk

Synchronized

LIFO

data_out

cs

/

reset

rd_en

wr_en

data_in

empty

full

LIFO structure



 You could hardcode ROM / initialize RAM, e.g.
 Initializing the memory

reg [7:0] mem [7:0] = {

7'b101_1001, // [0]

7'b001_1100, // [1]

7'b101_1011, // [2]

7'b010_1001, // [3]

7'b110_0110, // [4]

7'b011_1001, // [5]

7'b101_1001, // [6]

7'b100_0001, // [7]

};

 Using a case statement in a RAM MCU
always @ (re or address)

begin

case (address)

0 : data = 99;

1 : data = 12

2 : data = 140;

3 : data = 110;

…

endcase

end



// You can also intialize your memory as follows…

module mymod_tb ();

parameter MEM_SIZE = 256

reg [7:0] mem [0:MEM_SIZE -1]

initial

begin

for (i = 0; i < MEM_SIZE - 1; i = i + 1)

begin

mem[i][0] = 0;

end

end

endmodule

Note that for used 

here is usable in 

simulation and when 

used to implement a 

module the for is 

unravelled to 

generate logic, it 

does not necessarily 

handle loop 

dependencies well.



module rom (

addr , // Address input

data  , // Data output

re    , // Read Enable 

cs      // Chip Select

);

input  [7:0] addr;

output [7:0] data; 

input re, cs;          

reg [7:0] mem [0:255] ;  

assign data = (cs && re)? mem[addr] : 8'b0;

initial begin

$readmemb("mem.csv", mem); // mem.csv is memory file

end

endmodule

Usually the simulator expects 

mem.csv to have numbers in text, 

one column per row, e.g.:

mem.csv:

00000000

00000001

00000010

00000011

….

(stores 

0,1,2,3… 

as binary)



Wishbone bus
A brief view of the wishbone bus architecture

Slides 17 – 34 not examined this year!

*Image source: ‘book’ PNG Designed By Grafix Point from https://pngtree.com

https://pngtree.com/


 The Avalon bus by Altera – Open Standard

 Advanced Microcontroller Bus 
Architecture (AMBA) by ARM – Open Standard

 On-chip Peripheral Bus (OPB) by Xilinx

 Wishbone bus (originally developed by 
Silicore Corporation) – Open Standard



Wishbone bus
A brief view of the wishbone bus architecture



 Initially developed by Silicore Corporation.
 OpenCores has chosen to recommend 

Wishbone compatability for all open IP 
cores particularly ones added to their 
repository

 The Wishbone bus structure and protocol 
is not copyrighted and can be freely 
copied and distributed

 Wishbone is made to let designers 
combine several designs written in 
Verilog, VHDL or some other HDL for 
reuse and electronic design automation 



 There are two main interfaces for Wishbone:
 Master and slave interfaces

 Master interface
 These are IP cores that are capable of initiating bus 

use cycles.

 Slave interface
 These capable of accepting and responding to bus use 

cycles. 

 Various interconnection topologies are supported 
by this standard, including:
 Point-to-point connection
 Daisy chain / Dataflow interconnection
 Shared bus
 Hierarchical topology / crossbar switches



 Bus size: 8, 16, 32, 64-bit
 Signals are synchronous to a single clock but some 

slave responses must be generated combinatorial 
for maximum performance.

 Wishbone permits addition of a "tag bus" to 
describe the data. But reset, simple addressed 
reads and writes, transfer of data blocks, and 
indivisible bus cycles all work without tags.

 Technically (by decree of OpenCores) “A device 
does not conform to the Wishbone specification 
unless it includes a data sheet to describe what it 
does, bus width, utilization, etc”. This promotes 
reuse of design.

Information Source: https://en.wikipedia.org/wiki/Wishbone_(computer_bus

https://en.wikipedia.org/wiki/Wishbone_(computer_bus


Image source: https://en.wikipedia.org/wiki/Wishbone_(computer_bus)

Standard connection for timing diagrams.

CLK_O : system clock output 

generated by SysCon module. It 

coordinates all activities for the 

internal logic. Connects to CLK_I 

on MASTER and SLAVE 

RST_O: The reset output 

generated by the SysCon

module. Forces all Wishbone 

interfaces to restart. All internal 

self-starting state machines are 

forced into an initial state.

CLK_ORST_O

Global signals / SysCon control module

https://en.wikipedia.org/wiki/Wishbone_(computer_bus)


Standard connection for timing diagrams.

CLK_I: The clock input, 

coordinates all activities for the 

internal logic within the 

Wishbone interconnect. 

• All Wishbone input signals are 

stable before the rising edge 

of CLK_I. 

• Wishbone output signals are 

registered at the rising edge 

of CLK_I 

CLK_ORST_O

Signals Common to MASTER and SLAVE Interfaces



Standard connection for timing diagrams.

RST_I: Force Wishbone 

interface to restart.

DAT_I: Data input port to 

slave/master. The bus size is

determined by the port size (8, 

16, 32 or 64-bit).

DAT_O: Data output port used. 

Bus size as above, max 64bits. 

CLK_ORST_O

Signals Common to MASTER and SLAVE Interfaces



Standard connection for timing diagrams.

TGD_I: Tag for Data. Contains 

information that is associated with 

the data input array (e.g. type of 

data sent), and is qualified by 

signal STB_I. e.g. parity 

protection, error correction and 

time stamp information can be 

attached to the data bus. These 

tag bits simplify the task of 

defining new signals because their 

timing (in relation to every bus 

cycle) is pre-defined by this 

specification. The name and 

operation of a data tag must be 

defined in the Wishbone 

Datasheet for the device.

TGD_O: as per above for output

CLK_ORST_O

Signals Common to MASTER and SLAVE Interfaces



Standard connection for timing diagrams.

ACK_I: Acknowledge input, 

indicates the normal termination of a 

bus cycle (see also ERR_I & RTY_I 

for exception handling)

ADR_O: The address output bus, 

used to indicate address if device 

accessed.

CYC_O: The cycle output marker.

• When asserted, indicates a valid 

bus cycle is in progress.

• Signal is asserted for duration of 

all bus cycles. (e.g. during block 

transfer CYC_O is asserted for 

first data transfer and remains 

asserted to last data transfer)

• Useful for interfaces with multi-

port interfaces such as dual port 

memories.

MASTER Interfaces



Standard connection for timing diagrams.

WE_O: Write enable output indicates 

whether the current local bus cycle is 

a READ or WRITE cycle. The signal is 

negated during READ cycles, and is 

asserted during WRITE cycles.

SEL_O: The select output array 

indicates:

• when valid data is expected on the 

DAT_I bus during READ cycles, 

and

• when it is placed on the DAT_O 

signal array during WRITE cycles.

STB_O: The strobe output indicates a 

valid data transfer cycle. Qualifies 

various other signals on the interface 

such as SEL_O.

The SLAVE asserts either ACK_I, 

ERR_I or RTY_I in response to every 

assertion of STB_O by master. 

MASTER Interfaces



Standard connection for timing diagrams.

STALL_I: pipeline stall input 

indicates current slave is not able to 

accept the transfer in the transaction 

queue (used in pipelined mode). 

ERR_I: indicates an abnormal cycle 

termination.

LOCK_O: The lock output when 

asserted indicates the current bus 

cycle is uninterruptible. Lock is 

asserted to request complete 

ownership of the bus.

RTY_I: The retry input indicates the 

interface is not ready to accept or 

send data, and that the cycle should 

be retried. (when and how the cycle 

is retried is defined by the IP core 

supplier). 

MASTER Interfaces – special error handing signals



Standard connection for timing diagrams.

ACK_O: Acknowledge output, when 

asserted, indicates the termination of 

a normal bus cycle. 

ADR_I: Address input array passes 

a binary address. Bus size is specific 

to the address width of the core. NB: 

Lower array boundary is determined 

by the data port size. E.g. 32-bit data 

port has ADR_O [31:2].

CYC_I: When asserted, indicates 

that a valid bus cycle is in progress 

SLAVE Interfaces



 Reset can be asserted for any length of time
 All Wishbone interfaces must initialize themselves at 

the rising CLK_I edge following the assertion of 
RST_I.

 They must stay in the initialized state until the rising 
CLK_I edge that follows the negation of RST_I.

 RST_I must be asserted for at least one complete 
clock cycle.

 Note: CLK_I line schedules the process as to by 
when signals are asserted and sensed (e.g. the order 
of asserting STB_O and CYC_I is arbitrary, but must 
be done before a positive clock edge) 
 There is method in this clock-triggered approach because 

it simplifies the interfacing logic and the statemachines for 
the master and slave by having them only trigged by 
posedge CLK_I and not anything else (FPGAs typically are 
designed around making the clock accessible and 
synched, also save space for other modules).



Standard SINGLE READ cycleStandard SINGLE WRITE cycle

MASTER initiate a transfer cycle by asserting CYC_O

MASTER MUST assert CYC_O for the duration of READ/WRITE cycle

MASTER asserts STB_O when ready to transfer data 

STB_O remains asserted until SLAVE asserts one of the cycle terminating

signals ACK_I], ERR_I or RTY_I

At every rising edge of CLK_I the slave/master samples the signals and must 

respond by asserting relevant signals before the next rising clock edge.
Slave will sense

signals here

Slave must

assert signals 

before here

Master senses 

signals here

Slave will sense

signals here

Slave must

assert signals 

before here



 Recommended

Simple starting point provided by 
OpenCores: 
https://opencores.org/forum,Cores,0,608

https://opencores.org/forum,Cores,0,608


 Altera Avalon interface bus used as Nios embedded 
processor peripheral bus

 Designed (originally) to accommodate peripheral 
development for the System-On-a-Programmable-Chip 
(SOPC) environment.

 Qsys now replaces SOPC tool
 The generated switch fabric logic includes several chip 

select signals for 
 data-path multiplexing, address decoding, wait-state 

generation, interrupt-priority assignment, dynamic-bus sizing, 
multi-muster arbitration logic and advanced switch fabric 
transfer. 

 Mainly intended for implemented on Altera devices using 
Qsys / SOPC Builder

 Avalon Bus is generated automatically, when a new Nios
core with peripherals is created in Sys/SOPC-builder

 Is an open standard (can develop own Avalon modules)



Any Question??



Image sources:

man working on laptop – flickr

scroll, video reel, big question mark – Pixabay http://pixabay.com/ (public domain)

some diagrammatic elements are from Xilinx ISE screenshots

book icon - https://pngtree.com

https://commons.wikimedia.org/wiki/Category:Images (creative commons)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material, 

particularly image sources that have been used in this presentation. I have put much 

effort into trying to make this material open access so that it can be of benefit to others in 

their teaching and learning practice. Any mistakes or omissions with regards to these 

issues I will correct when notified. To the best of my understanding the material in these 

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0 

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to 

this presentation (it’s not because I particularly want my slides referenced but more to 

acknowledge the sources and generosity of others who have provided free material such 

as the images I have used).

http://pixabay.com/
https://pngtree.com/
https://commons.wikimedia.org/wiki/Category:Images
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