
Lecture 22

Memories Controllers (part 2), On-chip
Interfacing Standards, Wishbone

Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

http://creativecommons.org/licenses/by-sa/4.0/

 Memory Control Units (part 2 of 2)

Dual-port memory control unit

Setting up memory in code & simulation

FIFO and LIFO memory modules

 On-chip Interfacing Standards*

Wishbone

The Altera/Intel
Avalon Bus

* The topics on these two commonly used interfacing

standards are optional (supplementary reading) this year

Memory Controllers
(part 2 of 2)
EEE4120F

clk

Half-duplex

Dual-port

Memory

This is a usual (implicit handshaking) interface for a memory control unit

Explanation of ports:

clk : clock input

w_addr, w_data : write address and data

r_addr, r_data : read data address and data

we, re : write enable, read enable

cs : chip select (i.e. chip ignores inputs if cs=0)

w_addr

we

cs

Note:

• The cs port isn’t necessarily needed.

• You could simplify this to dropping the

re and we (assume always active)

and use instead a cs line to decide

whether or not to activate the module.

• This module allows up to one read

and one write simultaneously

• It is undefined what the r_data will be

if you try and write and read at the

same time to the same address (the

w_data will get written to the location

but the returned read value might be

the old or the new value)

w_data
/

/

r_addr /

re

r_data/

https://www.edaplayground.com/x/4eSi

https://www.edaplayground.com/x/4eSi

// a simple dual-port RAM in Verilog

// Test in EDAPlayground at: https://www.edaplayground.com/x/4eSi

module hdp_ram (

clk , // clock input

we , // write enable

w_addr , // write address

w_data , // write data

re , // read enable

r_addr , // read address

cs , // chip select (i.e. chip ignores inputs if cs=0)

r_data // output for read operation

);

// Setup some parameters

parameter DATA_WIDTH = 8; // word size of the memory

parameter ADDR_WIDTH = 8; // number of memory words, e.g. 2^8-1

parameter RAM_DEPTH = 1 << ADDR_WIDTH;

// Define inputs

input clk, we, re, cs;

input [ADDR_WIDTH-1:0] r_addr, w_addr;

input [DATA_WIDTH-1:0] w_data;

output reg [DATA_WIDTH-1:0] r_data;

// Private registers

reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1]; // Set up the memory array

// Write to or read from memory

always@ (posedge clk)

begin

if (cs)

begin

if (we) mem[w_addr] <= w_data;

if (re) r_data <= mem[r_addr];

end

end

endmodule

As you can see, the implementation

is easier than the single port MCU

as it does not need to use a inout

tristate port for the data.

https://www.edaplayground.com/x/4eSi

https://www.edaplayground.com/x/4eSi

// EEE4120F Memory Control Unit Example

// Testbench for the dual port dp_ram RAM control memory unit

module hdp_ram_tb ();

reg clk, cs, we, re;

reg [7:0] w_data; // this is the connection to dp_ram write data port

reg [7:0] w_addr; // address to write to

reg [7:0] r_addr; // address to read from

wire [7:0] r_data; // link to data returned on a read

// Instantiate the module to be tested

hdp_ram hdp_ram_uut(clk,we,w_addr,w_data,re,r_addr,cs,r_data);

initial begin

// set up initial conditions

clk = 0; cs = 0; we = 1;

re = 0; r_addr= 1; w_addr= 1;

w_data= 100;

$display("clk cs we re raddr waddr rdata wdata");

$monitor("%b %b %b %b %03d %03d %03d %03d",

clk,cs,we,re,r_addr,w_addr,r_data,w_data);

// set up to write to 100 to [1] and disable read:

cs <= 1; #5 $display("write 100 to [1]"); // (the #5 is here to force the display output)

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse

re <= 1; w_addr <= 2; w_data <= 101;

#5 $display("write 101 to [2] and read from 1");

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse

end

endmodule https://www.edaplayground.com/x/4eSi

https://www.edaplayground.com/x/4eSi

clk

Full-duplex

Dual-port

Memory

This is basically like the dual port memory, but it has a write enable for both data ports,

and separate datain and dataout ports so that a dual read or write can be done.

Explanation of ports:

clk : clock input

a_we, b_we: write enable/read enable for a,b

a_addr, b_addr : address for channel a and b

a_wdata, b_wdata : data to write for a,b if we=1

a_rdata, b_rdata : data read for a,b if we=0

cs : chip select (i.e. chip ignores inputs if cs=0)

a_addr

a_we

cs

Note:

• This module supports reading or

writing to memory channel a or b at

the same time.

a_wdata
/
/

a_rdata/

https://www.edaplayground.com/x/64Vt

b_rdata/

b_addr
b_we

b_wdata
/
/

The code for this is fairly easy

to construct using the previous

examples. See below link to

access the code.

https://www.edaplayground.com/x/64Vt

clk

Bidirectional

Dual-port

Memory

This is basically like the dual port memory, but it has a write enable for both data ports,

and separate datain and dataout ports so that a dual read or write can be done.

Explanation of ports:

clk : clock input

a_we, b_we: write enable/read enable for a,b

a_addr, b_addr : address for channel a and b

a_data, b_data : data to write/read for a,b

cs : chip select (i.e. chip ignores inputs if cs=0)

a_addr

a_we

cs

Note:

• This module supports reading or

writing to either memory channel a or

b at the same time

a_data
/
/

b_addr
b_we

b_data
/
/

The code for this is fairly easy

to construct using the earlier

examples of single-port and

half-duplex ram. A link to a

completed example is below:

https://www.edaplayground.com/x/5d3t

https://www.edaplayground.com/x/5d3t

FIFOs and LIFOs
(a specialized type of memory)

EEE4120F

 First In First Out (FIFO)

These are useful for I/O buffering, e.g. for
streaming data from serial

 Last In First Out (LIFO) or stack

A stack can be used similarly to how it is
used in software, or to sequences
operations (e.g. reverse polish calculator).

clk

Synchronized

FIFO

data_out

cs

/

module sfifo (

clk , // Clock input

reset , // high reset

cs , // chip select

rd_en , // read enable

wr_en , // write enable

data_in , // data input

data_out , // data output

empty , // FIFO empty

full // FIFO full

);

reset

rd_en

wr_en

data_in

empty

full

The module would be designed around a

certain size, e.g.:

// 4-element memory array for fifo queue

reg [7:0] fifomem [0:3];

The working of the module would be as expected, the empty

line will be high when no data is in the queue, and full will be

high when the queue is full. A head and tail wrapping index

would likely be used. But, when the queue is full and a new

item is added, the head and tail would both need to increment

to make the last item ‘fall’ out of the queue.

FIFO structure

https://www.fpga4student.com/2017/01/verilog-code-for-fifo-memory.html

See example code at:

https://opencores.org/projects/generic_fifos

Notes on comms: if you are just sending data, and not at a very fast rate, then

you probably do not need to worry with a FIFO, to save space. But if you are

streaming serial data, where it is a problem to have the accastional missing

byte, then you will probably want a FIFO – and likely handshaking logic if not

flow control to avoid the potential for data being lost.

https://www.fpga4student.com/2017/01/verilog-code-for-fifo-memory.html
https://opencores.org/projects/generic_fifos

The module can use the same interface as a FIFO, it’s just that

the internal workings will be such that input will be extracted in

the reverse order that they are put into the stack. A top index (as

apposed to a head and tail) would be used. Like the FIFO, the

most recent addition is typically the most desirable to keep when

the stack is full, so the top pointer will just continue being

incremented (wrapping at the last address) which will keep the

most recent data in the stack.

clk

Synchronized

LIFO

data_out

cs

/

reset

rd_en

wr_en

data_in

empty

full

LIFO structure

 You could hardcode ROM / initialize RAM, e.g.
 Initializing the memory

reg [7:0] mem [7:0] = {

7'b101_1001, // [0]

7'b001_1100, // [1]

7'b101_1011, // [2]

7'b010_1001, // [3]

7'b110_0110, // [4]

7'b011_1001, // [5]

7'b101_1001, // [6]

7'b100_0001, // [7]

};

 Using a case statement in a RAM MCU
always @ (re or address)

begin

case (address)

0 : data = 99;

1 : data = 12

2 : data = 140;

3 : data = 110;

…

endcase

end

// You can also intialize your memory as follows…

module mymod_tb ();

parameter MEM_SIZE = 256

reg [7:0] mem [0:MEM_SIZE -1]

initial

begin

for (i = 0; i < MEM_SIZE - 1; i = i + 1)

begin

mem[i][0] = 0;

end

end

endmodule

Note that for used

here is usable in

simulation and when

used to implement a

module the for is

unravelled to

generate logic, it

does not necessarily

handle loop

dependencies well.

module rom (

addr , // Address input

data , // Data output

re , // Read Enable

cs // Chip Select

);

input [7:0] addr;

output [7:0] data;

input re, cs;

reg [7:0] mem [0:255] ;

assign data = (cs && re)? mem[addr] : 8'b0;

initial begin

$readmemb("mem.csv", mem); // mem.csv is memory file

end

endmodule

Usually the simulator expects

mem.csv to have numbers in text,

one column per row, e.g.:

mem.csv:

00000000

00000001

00000010

00000011

….

(stores

0,1,2,3…

as binary)

Wishbone bus
A brief view of the wishbone bus architecture

Slides 17 – 34 not examined this year!

*Image source: ‘book’ PNG Designed By Grafix Point from https://pngtree.com

https://pngtree.com/

 The Avalon bus by Altera – Open Standard

 Advanced Microcontroller Bus
Architecture (AMBA) by ARM – Open Standard

 On-chip Peripheral Bus (OPB) by Xilinx

 Wishbone bus (originally developed by
Silicore Corporation) – Open Standard

Wishbone bus
A brief view of the wishbone bus architecture

 Initially developed by Silicore Corporation.
 OpenCores has chosen to recommend

Wishbone compatability for all open IP
cores particularly ones added to their
repository

 The Wishbone bus structure and protocol
is not copyrighted and can be freely
copied and distributed

 Wishbone is made to let designers
combine several designs written in
Verilog, VHDL or some other HDL for
reuse and electronic design automation

 There are two main interfaces for Wishbone:
 Master and slave interfaces

 Master interface
 These are IP cores that are capable of initiating bus

use cycles.

 Slave interface
 These capable of accepting and responding to bus use

cycles.

 Various interconnection topologies are supported
by this standard, including:
 Point-to-point connection
 Daisy chain / Dataflow interconnection
 Shared bus
 Hierarchical topology / crossbar switches

 Bus size: 8, 16, 32, 64-bit
 Signals are synchronous to a single clock but some

slave responses must be generated combinatorial
for maximum performance.

 Wishbone permits addition of a "tag bus" to
describe the data. But reset, simple addressed
reads and writes, transfer of data blocks, and
indivisible bus cycles all work without tags.

 Technically (by decree of OpenCores) “A device
does not conform to the Wishbone specification
unless it includes a data sheet to describe what it
does, bus width, utilization, etc”. This promotes
reuse of design.

Information Source: https://en.wikipedia.org/wiki/Wishbone_(computer_bus

https://en.wikipedia.org/wiki/Wishbone_(computer_bus

Image source: https://en.wikipedia.org/wiki/Wishbone_(computer_bus)

Standard connection for timing diagrams.

CLK_O : system clock output

generated by SysCon module. It

coordinates all activities for the

internal logic. Connects to CLK_I

on MASTER and SLAVE

RST_O: The reset output

generated by the SysCon

module. Forces all Wishbone

interfaces to restart. All internal

self-starting state machines are

forced into an initial state.

CLK_ORST_O

Global signals / SysCon control module

https://en.wikipedia.org/wiki/Wishbone_(computer_bus)

Standard connection for timing diagrams.

CLK_I: The clock input,

coordinates all activities for the

internal logic within the

Wishbone interconnect.

• All Wishbone input signals are

stable before the rising edge

of CLK_I.

• Wishbone output signals are

registered at the rising edge

of CLK_I

CLK_ORST_O

Signals Common to MASTER and SLAVE Interfaces

Standard connection for timing diagrams.

RST_I: Force Wishbone

interface to restart.

DAT_I: Data input port to

slave/master. The bus size is

determined by the port size (8,

16, 32 or 64-bit).

DAT_O: Data output port used.

Bus size as above, max 64bits.

CLK_ORST_O

Signals Common to MASTER and SLAVE Interfaces

Standard connection for timing diagrams.

TGD_I: Tag for Data. Contains

information that is associated with

the data input array (e.g. type of

data sent), and is qualified by

signal STB_I. e.g. parity

protection, error correction and

time stamp information can be

attached to the data bus. These

tag bits simplify the task of

defining new signals because their

timing (in relation to every bus

cycle) is pre-defined by this

specification. The name and

operation of a data tag must be

defined in the Wishbone

Datasheet for the device.

TGD_O: as per above for output

CLK_ORST_O

Signals Common to MASTER and SLAVE Interfaces

Standard connection for timing diagrams.

ACK_I: Acknowledge input,

indicates the normal termination of a

bus cycle (see also ERR_I & RTY_I

for exception handling)

ADR_O: The address output bus,

used to indicate address if device

accessed.

CYC_O: The cycle output marker.

• When asserted, indicates a valid

bus cycle is in progress.

• Signal is asserted for duration of

all bus cycles. (e.g. during block

transfer CYC_O is asserted for

first data transfer and remains

asserted to last data transfer)

• Useful for interfaces with multi-

port interfaces such as dual port

memories.

MASTER Interfaces

Standard connection for timing diagrams.

WE_O: Write enable output indicates

whether the current local bus cycle is

a READ or WRITE cycle. The signal is

negated during READ cycles, and is

asserted during WRITE cycles.

SEL_O: The select output array

indicates:

• when valid data is expected on the

DAT_I bus during READ cycles,

and

• when it is placed on the DAT_O

signal array during WRITE cycles.

STB_O: The strobe output indicates a

valid data transfer cycle. Qualifies

various other signals on the interface

such as SEL_O.

The SLAVE asserts either ACK_I,

ERR_I or RTY_I in response to every

assertion of STB_O by master.

MASTER Interfaces

Standard connection for timing diagrams.

STALL_I: pipeline stall input

indicates current slave is not able to

accept the transfer in the transaction

queue (used in pipelined mode).

ERR_I: indicates an abnormal cycle

termination.

LOCK_O: The lock output when

asserted indicates the current bus

cycle is uninterruptible. Lock is

asserted to request complete

ownership of the bus.

RTY_I: The retry input indicates the

interface is not ready to accept or

send data, and that the cycle should

be retried. (when and how the cycle

is retried is defined by the IP core

supplier).

MASTER Interfaces – special error handing signals

Standard connection for timing diagrams.

ACK_O: Acknowledge output, when

asserted, indicates the termination of

a normal bus cycle.

ADR_I: Address input array passes

a binary address. Bus size is specific

to the address width of the core. NB:

Lower array boundary is determined

by the data port size. E.g. 32-bit data

port has ADR_O [31:2].

CYC_I: When asserted, indicates

that a valid bus cycle is in progress

SLAVE Interfaces

 Reset can be asserted for any length of time
 All Wishbone interfaces must initialize themselves at

the rising CLK_I edge following the assertion of
RST_I.

 They must stay in the initialized state until the rising
CLK_I edge that follows the negation of RST_I.

 RST_I must be asserted for at least one complete
clock cycle.

 Note: CLK_I line schedules the process as to by
when signals are asserted and sensed (e.g. the order
of asserting STB_O and CYC_I is arbitrary, but must
be done before a positive clock edge)
 There is method in this clock-triggered approach because

it simplifies the interfacing logic and the statemachines for
the master and slave by having them only trigged by
posedge CLK_I and not anything else (FPGAs typically are
designed around making the clock accessible and
synched, also save space for other modules).

Standard SINGLE READ cycleStandard SINGLE WRITE cycle

MASTER initiate a transfer cycle by asserting CYC_O

MASTER MUST assert CYC_O for the duration of READ/WRITE cycle

MASTER asserts STB_O when ready to transfer data

STB_O remains asserted until SLAVE asserts one of the cycle terminating

signals ACK_I], ERR_I or RTY_I

At every rising edge of CLK_I the slave/master samples the signals and must

respond by asserting relevant signals before the next rising clock edge.
Slave will sense

signals here

Slave must

assert signals

before here

Master senses

signals here

Slave will sense

signals here

Slave must

assert signals

before here

 Recommended

Simple starting point provided by
OpenCores:
https://opencores.org/forum,Cores,0,608

https://opencores.org/forum,Cores,0,608

 Altera Avalon interface bus used as Nios embedded
processor peripheral bus

 Designed (originally) to accommodate peripheral
development for the System-On-a-Programmable-Chip
(SOPC) environment.

 Qsys now replaces SOPC tool
 The generated switch fabric logic includes several chip

select signals for
 data-path multiplexing, address decoding, wait-state

generation, interrupt-priority assignment, dynamic-bus sizing,
multi-muster arbitration logic and advanced switch fabric
transfer.

 Mainly intended for implemented on Altera devices using
Qsys / SOPC Builder

 Avalon Bus is generated automatically, when a new Nios
core with peripherals is created in Sys/SOPC-builder

 Is an open standard (can develop own Avalon modules)

Any Question??

Image sources:

man working on laptop – flickr

scroll, video reel, big question mark – Pixabay http://pixabay.com/ (public domain)

some diagrammatic elements are from Xilinx ISE screenshots

book icon - https://pngtree.com

https://commons.wikimedia.org/wiki/Category:Images (creative commons)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particularly want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/
https://pngtree.com/
https://commons.wikimedia.org/wiki/Category:Images

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Memory Controllers (part 2 of 2)
	Slide 4: Dual-port Memory Control Unit half-duplexed channels, one read/one write
	Slide 5: Dual-port Memory Control Unit
	Slide 6: Dual-port Memory Control Unit Testbench
	Slide 7: Full Dual-port Memory Control Unit full-duplex channels, read&write per channel
	Slide 8: Full Dual-port Memory Control Unit with bidirectional channels
	Slide 9: FIFOs and LIFOs (a specialized type of memory)
	Slide 10: FIFOs and LIFOs
	Slide 11: FIFO Verilog Interface
	Slide 12: Examples FIFOs online
	Slide 13: LIFO Interface
	Slide 14: Setting up memory in simulation
	Slide 15: Initializing memory in simulation (using a macro)
	Slide 16: Initializing memory in simulation (reading from file)
	Slide 17: Wishbone bus
	Slide 18: Interfacing Standards
	Slide 19: Wishbone bus
	Slide 20: Wishbone
	Slide 21: Wishbone
	Slide 22: Wishbone
	Slide 23: Wishbone – the interface
	Slide 24: Wishbone – the interface
	Slide 25: Wishbone – the interface
	Slide 26: Wishbone – the interface
	Slide 27: Wishbone – the interface
	Slide 28: Wishbone – the interface
	Slide 29: Wishbone – the interface
	Slide 30: Wishbone – the interface
	Slide 31: Wishbone reset
	Slide 32: Wishbone Standard Read/Write Cycle
	Slide 33: Wishbone examples / templates
	Slide 34: Altera/Intel Avalon Bus
	Slide 35: End of Lecture
	Slide 36

