
Lecture 21
On-chip Interconnection, Memory types,

Memory Control Units (part1)

Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

http://creativecommons.org/licenses/by-sa/4.0/

 On-chip interconnection bus topologies

 Interfacing standards

 Memory types

 Memory Control Units (part 1 of 2)

 Using Memory &
MCU in Verilog

Comments on this topic:

These are aspects a computer engineer or an

embedded systems developer should know about.

Regards of which YODA project chosen, the first three

parts are relevant to both OpenCL or FPGA. The last

three parts (covering the bulk of this lecture) is more

closely relevant to FPGA-based, and special-purpose

computer, development techniques.

On-chip communication

topologies
EEE4120F

 Point-to-point direct coupling (or
dedicated peer interface)

One-to-one connection, or one to many

Benefits: simple (simplest, isn’t really a
bus), fast, allows high bandwidth, low area,
quick & easy, low power (closely coupled),
efficient to implement (no need for driver
lines, separate arbitrator etc.).

Drawbacks: only direct connections. Often
non-standard control lines.

(may lead to daisy chaining)

 Chain of point-to-point directly coupled links

 A sequence of one-to-one connections

 Benefits: (fairly) simple, natural approach for much
signal processing (feed forward data flow), supports
pipelining, fast neighbour links allows high bandwidth,
low area, typically no need for separate arbitrator (if
sequenced right).

 Drawbacks: Comprise only direct links between
neighbours. Often non-standard control lines. Challenges
in different processing speeds for each core (can lead to
trickey buffering).

(may lead towards ring topology)

 Shared bus topology

Multiple masters and slaves on a shared bus.

Requires a bus arbiter (or bus arbitrator
module, the BAM; ‘master’ could be this)

Benefits: simple, extensible, low area cost,
easy to build & efficient to implement.

Drawbacks: Larger load per data bus line,
longer delay for data transfer, larger energy
consumption,
and lower
bandwidth.

(see next lecture for more on this)

 Ring topology
 Each node alternates between master/slave to receive and

transmit over the ring interface.
 Need a ring communication protocol, usually a token-pass

protocol.
 Benefits: somewhat scalable; comprises only closely-coupled

connections between neighbouring devices (i.e., not all
components needing to be coupled to the same bus lines);
Low power for driving signals (not needing to drive signals far and
to many receivers); Possibly higher bandwidths.

 Drawbacks: limited scalability;
potentially high latencies (long
delay between getting token and
forwarding data), and possibly
lower bandwidth. May cause
collectively higher power (due
to having to relay signals, albeit
each relay using little power)

BRIDGE

 Hierarchical bus:
 Several shared buses interconnected by bridges forming a

hierarchy / tree.
 Components placed at an appropriate level in the

hierarchy according to the performance level they require
and which nodes they speak to.

 Disadvantages: Transactions across the bridge involve
additional overhead; during transfer both buses
inaccessible to other nodes.

 Advantages: Larger throughput using this model (than
simple bus) because:
a. Decreased load per bus segment,
b. Potential for simultaneous parallel

transactions on different buses
c. Multiple transfers can be

preceded bridges in a
pipelined manner.

 The Avalon bus by Altera – Open Standard

 Advanced Microcontroller Bus
Architecture (AMBA) by ARM – Open Standard

 On-chip Peripheral Bus (OPB) by Xilinx

 Wishbone bus (originally developed by
Silicore Corporation) – Open Standard

(see next lecture for more on this)

Memories (recap)
EEE4120F

What you learned previously about memories and memory types

(e.g. in ES2) are of course relevant to FPGA-based embedded

systems as well. A super fast recap of the essential points follows…

0K Volatile

Knowledge

Bank

0K Non-volatile

Knowledge

Bank

ES Engineer

 Volatile

 Non-volatile

Rather forgetful, but with

volatile memory can get

things done.

 DRAM

Capacitor stores “memory” that leaks away
and needs to be periodically refreshed

High memory capacity

 SDRAM = Synchronous DRAM

Runs in synch with system* clock

DDR SDRAM = Double-data rate SDRAM,
runs at 2x the system clock

* Note the system clock in this case is closer to the “motherboard” clock. Usually

considerably slower than the processor clock (standard DRAM may have its own

even slower clock and synchronization hassles)

 SRAM

Static RAM

Does not need refreshing

Uses “bistable latching circuitry”
(i.e. a flip flop) to store each bit

Can be very fast compared to DRAM

A small amount of SRAM (~16 Kb) is typically
used within a microcontroller / FPGA to hold
things such as a boot loader and interrupt
vectors, and as CACHE

SR Latch to hold
a bit of SRAM *

SR Latch
implemented
using two NOR
gates *

* Images from http://en.wikipedia.org/wiki/Latch_(electronics)

 BRAM or Block RAM
 This refers to a small block of RAM (a few Kilobytes)

integrated within the FPGA (connected some LBs)

 Generally only found in higher-end FPGAs (e.g. 16Kb
takes ~ 256K transistors if not more for connection and
addressing logic)

 Block SRAM is more common and easier to use; the FPGA
may include Block DRAM

 Generally can be set to RAM or ROM

 As ROM it can be used as a (big) LUT

 Usually not directly accessible form outside the FPGA
(need to provide circuitry / softcore and comms protocol to access
it from a PC)

 Under development
Z-RAM : Zero-capacitor RAM

Single transistor

Higher density than DRAM

Although it is called zero-capacitor, the
capacitor is actually there in the form of a
“floating body effect” caused by the
transistor substrate

See: http://www.innovativesilicon.com/

http://www.innovativesilicon.com/

0K Volatile

Knowledge

Bank

0K Non-volatile

Knowledge

Bank

ES Engineer

Now things are looking better..

both volatile and non-volatile

allows more smarts and

longer-term benefit.

 Trusty old ROM and EEPROM
Still widely used as it is highly robust
Current versions store large amounts of data
Fairly simple technology (i.e. fused connections)

and (in EEPROM ability to fuse and then
program/un-fuse connections)

 Usually ROM is slower than RAM
 Shadowing ROM (i.e. copy to RAM) to make

it faster – especially for EEPROMs
 EEPROM very slow write; faster read

 Flash memory

Can be electrically erased and programmed

High capacity (e.g., millions of bytes/chip)

Needs to be programmed one block at a time
(~8Kb / block)

Erased (all bits in block set to 1)

Programmed one block at a time

Memory wear

Limited to about 100,000 erase – write cycles
 Usually a file system (e.g. ext3) will keep track of bad sectors (i.e.,

mark deteriorated blocks). But this deterioration might happen a certain
time after the erase and write is complete and verified.

The above diagram provides a macro circuit model for a single flash memory

cell, showing a Effective-Control-Gate (ECG) equivalent circuit and the Ideal-

Current-Mirror (ICM) used to calculate the floating gate (FG*) voltage.

MOSFET1 is the equivalent N-MOSFET model of a flash memory cell, and

MOSFET2 is the model of a N-MOSFET test structure that is identical with

the flash memory cell (excluding the short between FG and CG).

*

Image source: IEEE Electron Device

Letters, Vol. 26, No. 8, AUGUST

2005, pg 564 Available at:

http://koasas.kaist.ac.kr/bitstream/10

203/1570/1/01468223.pdf

http://koasas.kaist.ac.kr/bitstream/10203/1570/1/01468223.pdf
http://koasas.kaist.ac.kr/bitstream/10203/1570/1/01468223.pdf

Using Memory in Verilog
EEE4120F

 Very simple approach:

(NB this isn’t explicitly interfacing to a RAM
chip or even emulating a memory chip)

parameter DATA_WIDTH = 8; // word size of your memory

parameter RAM_DEPTH = 128; // amount of words you want

reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];

And there you go; you can now do operations such as:

mem[addr] = dataword; dataword = mem[addr];

(write to memory) (read from memory)

 The array access technique used in the previous
slide you probably already knew… and that’s fine
if you don’t need to use much data (e.g. < 32Kb)

 That array will be more like cache memory; it will
be fast, tightly coupled, and eat lots of your logic
elements.

 What we often need is a memory module that
may connect to external memory (i.e. on the
platform but not in the FPGA) or large chunks of
dedicated memory in the FPGA chip.

Memory Control Unit
(part 1 of 2)
EEE4120F

A memory module or memory control unit (MCU) is used to wrap access to a

memory device. It is usually going to use an implicit or explicit handshaking

communication, as the access to the memory might not be done at the same

speed as the FPGA is clocked. If you are using SRAM it can handle high

speed, but, being possibly on a different chip, the memory and your FPGA

logic might not be perfectly synchronized.

In these examples we are not actually using external memory, rather BRAM

or BROM but we may want multiple modules accessing the same memory,

and that is where a memory control unit is needed.

clk

Memory

This is a usual (implicit handshaking) interface for a memory control unit

Explanation of ports:

clk : clock input

address : address of memory to access

data : data word (bi-directional / inout)

cs : chip select (i.e. chip ignores inputs if cs=0)

we : write enable / read enable (if RAM chip)

oe : output enable (a safety precaution to prevent data from returned)

address

data

cs

we

oe

Note: The CS port

isn’t necessarily

needed.

The oe line is to be

able to decide if data

is latched to the

output data or not

https://www.edaplayground.com/x/2gb7

https://www.edaplayground.com/x/2gb7

clk

Memory

This is a usual (implicit handshaking) interface for a memory control unit

Explanation of ports:
clk : clock input

address : address of memory to access

datain : data input

dataout : data output

cs : chip select (i.e. chip ignores inputs if cs=0)

we : write enable / read enable (if RAM chip)

oe : output enable (a safety precaution to prevent data from returned)

address

datain

we

oe

dataout

MCU with dedicated input and output data lines (often easier & more reliable).

// RAM control unit

module ramcu (

clk , // Clock Input

address , // Address Input

data , // Data bi-directional

cs , // Chip Select

we , // Write Enable/Read Enable

oe // Output Enable

);

// Setup some parameters

parameter DATA_WIDTH = 8; // word size of the memory

parameter ADDR_WIDTH = 8; // number of memory words, e.g. 2^8-1

parameter RAM_DEPTH = 1 << ADDR_WIDTH; // i.e. RAM_DEPTH = 2^ADDR_WIDTH

// Define inputs

input clk, cs, we, oe;

input [ADDR_WIDTH-1:0] address;

// data is bidirectional

inout [DATA_WIDTH-1:0] data;

// Private registers

reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1]; // Set up the memory array

reg [DATA_WIDTH-1:0] r_data; // copy of data value to return

reg r_oe; // delayed oe, r_oe updates only when rdata updated

// START OF OPERATION: ///

// Tri-State Buffer control:

// The data item is defined as an inout, only when oe, output enabled

// is high, should it send a value to data, otherwise it should keep

// the data port linked to high impedence (z) so as not to drive a value.

// i.e. output to data happens when oe = 1 & cs = 1 & we = 0

// Write to memory when: we = 1 & cs = 1

always@ (posedge clk)

begin

if (cs)

begin

if (we) mem[address] <= data;

r_data <= mem[address];

end

r_oe <= oe;

end

assign data = (oe && cs && !we)? r_data : 8'bz;

endmodule // end ramcu Try it at: https://www.edaplayground.com/x/2gb7

https://www.edaplayground.com/x/2gb7

// EEE4120F Memory Control Unit Example

// Testbench for the ramcu RAM control unit

module ramcu_tb ();

wire [7:0] data; // this is the connection to ramcu data port

reg [7:0] data_value; // need a register to store value to send on a write

reg clk, cs, we, oe;

reg [7:0] addr;

// Instantiate the module to be tested

ramcu ramcu_uut(clk,addr,data,cs,we,oe);

assign data = !oe ? data_value : 'bz;

initial begin

// set up initial conditions

clk = 0; cs = 0; we = 0; oe = 0; addr = 0;

$display("clk cs we oe addr data");

$monitor("%b %b %b %b %03d %03d",

clk,cs,we,oe,addr,data);

// try doing a clock change just when nothing should happen (cs=0)

#5 clk = ~clk; #5 clk = ~clk;

// let is do a memory write...

// note that you need to deselect the chip before setting up data

$display("write 99 to mem[1]");

oe = 0; we = 1; cs = 1; addr = 8’d1; data_value = 8'd99;

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse

// now disconnect data_value from data line

$display("write junk into toplevel data_value buffer");

cs = 0; we = 0; oe = 0; data_value = 8'd2;

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse

// let's read the value back

$display("check reading back data");

addr = 8’d1; cs = 1; we = 0; oe = 1; // ask module to write out data

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse (reads the data)

// you should now have back the value that was written to memory

// disable chip select and write some more junk to local buffer

$display("write more junk into toplevel data_value");

cs = 0; data_value = 8'd123;

#5 clk = ~clk; #5 clk = ~clk; // do a clock pulse to see what happens

end // end initial

endmodule

// You could add this to the end of the code to see

// what it is memory:

// OPTIONAL: repeat loop to dump part of the memory

addr = 0;

#5

$display("dump some memory:");

repeat (5)

begin

$display("mem[%d]=%d",addr,ramcu_uut.mem[addr]);

addr = addr + 1;

end

Try it at: https://www.edaplayground.com/x/2gb7

https://www.edaplayground.com/x/2gb7

Any Question??

Image sources:

man working on laptop – flickr

scroll, video reel, big question mark – Pixabay http://pixabay.com/ (public domain)

some diagrammatic elements are from Xilinx ISE screenshots

https://commons.wikimedia.org/wiki/Category:Images (creative commons)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particularly want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/
https://commons.wikimedia.org/wiki/Category:Images

	Default Section
	Slide 1
	Slide 2: Lecture Overview
	Slide 3: On-chip communication topologies
	Slide 4: On-chip interconnection topologies
	Slide 5: On-chip daisy chain topologies / dataflow interconnects
	Slide 6: On-chip bus topologies
	Slide 7: On-chip bus topologies
	Slide 8: On-chip bus topologies
	Slide 9: Interfacing Standards
	Slide 10: Memories (recap)
	Slide 11: Memory types
	Slide 12: Volatile memory
	Slide 13: Volatile memory
	Slide 14: Volatile Memory
	Slide 15: Volatile memory
	Slide 16: Non-Volatile Memory types
	Slide 17: Non-Volatile memory
	Slide 18: Non-Volatile Memory
	Slide 19: NAND Flash memory model

	VerilogMemory
	Slide 20: Using Memory in Verilog
	Slide 21: Using memory in Verilog
	Slide 22: Setting up a Memory module
	Slide 23: Memory Control Unit (part 1 of 2)
	Slide 24: The Memory Control Unit
	Slide 25: Memory Control Unit Interface
	Slide 26: Memory Control Unit Interface
	Slide 27: Memory Control Unit in Verilog
	Slide 28: Memory Control Unit Test Bench
	Slide 29: End of Lecture
	Slide 30

