
Lecture 20
More Verilog. Configuration Architectures. RC
Building Blocks (IP Cores), basic handshaking,

latches and other interface ingredients

Lecturer:

Simon Winberg
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

(slide 46 onwards

not in syllabus)

http://creativecommons.org/licenses/by-sa/4.0/

 When to use assign

 Blocking & non-blocking simulation and
potential pitfalls

 The unconditional always

 Configuration architectures

 Digital signals,
Interface basics,
Using latches

 Large & Small RC
platform case studies

 This lecture provides theories may
assist you in the design of your YODA
system, how subsystems you may be
using in your design might cooperate in
a robust and dependable way.

 (The configuration architectures section is largely theory you should know
about, connecting with thoughts of designing an FPGA into a larger system, but
which you aren’t like to use further in this course)

Towards sharpening

your digital logic

design lightsabre

(This lecture includes syllabus

topics that is part of HPES, but

understandably more immediate

practical use of this would be

more towards students who

select to do a FPGA-based

YODA project).

 Assign is a continuous driver, it essentially links
some source on the RHS to a wire

 Assign is
 Used outside an always blocks
 Has a net or wire on the LHS

 The syntax is:
always netname <= RHS_expression

 Assign is used for driving a source (on the RHS) to
some wire or net type element on the LHS.

 The wire on the LHS changes value in response to
the source driving it, so whenever any source on
the RHS changes, the RHS expression is evaluated
and assigned to LHS.

 While one typically things to use blocking and non-blocking
assignments in implementing cores, it is also useful (almost essential
sometimes) for simulation. Consider these examples:

module blocking ();

reg a, b, c, d , e, f ;

// Blocking assignments

initial begin

$monitor("%g a=%b b=%b c=%b",

$time,a,b,c);

a = #10 1'b1;

// sim assigns 1 to a at time 10

b = #20 1'b0;

// sim assigns 0 to b at time 30

c = #30 1'b1;

// sim assigns 1 to c at time 60

end

endmodule

module nonblocking();

reg a, b, c ;

// Nonblocking assignments

initial begin

$monitor("%g a=%b b=%b c=%b",

$time,a,b,c);

a <= #10 1'b1;

// sim assigns 1 to a at time 10

b <= #20 1'b0;

// sim assigns 0 to b at time 20

c <= #30 1'b1;

// sim assigns 1 to c at time 30

end

endmodule
iverilog output:
0 a=x b=x c=x
10 a=1 b=x c=x
30 a=1 b=0 c=x
60 a=1 b=0 c=1

https://www.edaplayground.com/x/25Yx

iverilog outpt

0 a=x b=x c=x

10 a=1 b=x c=x

20 a=1 b=0 c=x

30 a=1 b=0 c=1

https://www.edaplayground.com/x/ars

https://www.edaplayground.com/x/25Yx
https://www.edaplayground.com/x/ars

 If blocking assignments are not properly ordered, a
race condition could occur

 A race condition is an undesirable situation that may occur
when a device attempts to perform two or more operations
at the same time, but due to the nature of the device the
operations must be done in the proper sequence to be
completed correctly.

 When blocking assignments are scheduled to
execute in the same time step (e.g. in different
always blocks), then order of execution is unknown

always @(posedge clock)

x = y;

always @(posedge clock)

y = x;

Example: clock

x

y

10 15 20 25 30

Case where the first always block

execute first… but maybe just luck.

 The always block does not necessarily
need to always have a sensitivity list. In
such a case the always block is
activated continuously

 This is commonly used for simulation,
e.g. to generate a clock…

let’s see a quick example

// Implement a simple 4-bit counter

module counter4 (clock,reset,count);

input clock;

input reset;

output reg[3:0] count;

always @(posedge clock)

begin

if (reset)

count = 0;

else

count = count + 1;

end

endmodule

let’s first implement a module that we want to send a clock to

Run example at: https://www.edaplayground.com/x/28dF

https://www.edaplayground.com/x/28dF

// generate a simulated clock that is connected to a 4-bit counter

module sim_clockgen (output clock);

parameter half_cycle = 50; // specify 1/2 clock period

parameter max_time = 1000; // max sim units to run for

reg clock; // the simulated clock

reg reset; // the simulated reset line

reg[3:0] count; // counter value to link to counter

initial // let's first reset the clock

begin

// tell the simulator what wires we want to monitor

$monitor("%g clock=%b count=%d",$time,clock,count);

clock <= 0;

reset <= 1; #200

reset <= 0;

end

… // …

Now let’s generate some code that first initializes the counter and

then sends a clock to it. The clock will have a period of 100 simulation

units, and the simulation will terminate after 1000 simulation units.

// generate a simulated clock that is connected to a 4-bit counter

module sim_clockgen (output clock);

… // …

// here is an unconditional always that continuously runs

always

begin

#half_cycle clock = ~clock;

end

// instantiate the 4-bit counter

counter4 mycounter (clock,reset,count);

initial // tell the simulator when to end

#max_time $finish;

endmodule

In this simulation we use an unconditional always to generate a clock

Configuration

Architectures
RC Architecture

Why cover this topic?
This topic is covered so that you have some understanding of what architectural aspects,

outside of the FPGA, is needed in order to enable the programming of an FPGA.

Generally, when an FPGA gets turned on, it has no ‘program’, or more accurately, the

configuration of its interconnects is not set up; at startup all its interconnects are linked to

high impedance to ensure the FPGA doesn’t blow up when you first turn it on. The

configuration hardware connects to the FPGA in order to get the FPGA set up and then

to start running useful combinational logic.

 Configuration architecture =

Underlying circuitry that loads configuration
data and keeps it at the correct locations

CPU

Finite

State

Machine

ROM

Configuration

controller

FPGA

Configuration

data

Configuration

control

Configuration

requests

Adapted from Hauck and Dehon Ch4 (2008)

Could store pre-configured bitmaps in memory

on the platform without having to send it each time

from the CPU. Include hardware for programming

the hardware (instead of the slower process of e.g.,

programming devices via JTAG from the host)

 Larger systems (e.g., the VCC*) may have
many FPGAs to be programmed)

 Models:

Sequentially programming FPGAs by shifting
in data

Multi-context – having a MUX choose which
FPGA to program

Configuration

bit
…

FPGA FPGA FPGA

Configuration

clock

Configuration

enable

IN OUT IN OUT IN OUT

Image adapted from Hauck and Dehon Ch4 (2008)

* As in the Virtual Computer Corporation’s (VCC) Virtual Computer (or Virtual Compacted Computer) architecture. See Case Study slides at end of slideshow.

 Partially reconfigurable systems

Not all configurations may need entire chip

Could leave parts of chips unallocated

Partial configuration decreases configuration time

Modifying part of a previously configured system

E.g., a placement and routing configuration
based on a currently configured state

Initial Configuration Updated Configuration

 Block configurable architecture

Not the same as “logical blocks” in an FPGA

Relocating configurations to different blocks at
run time also referred to as “swappable logic
units” (SLUs)

 Example: SCORE* relocatable architecture
in which configurable blocks are handled in
the same way as a virtual memory system

* Capsi & DeHon and Wawrzynek. “A streaming multithreaded model” In Third workshop on media and stream processors. 2001

 Reading

Hauck, Scott (1998). “The Roles of FPGAs in
Reprogrammable Systems” In Proceedings of
the IEEE. 86(4) pp. 615-639.

This optional reading will not examined

RC Building Blocks:

Digital Signals and

Data Transfers
Reconfigurable Computing

 Although one of our main objective is High
Performance and parallelized operation, there
are still sequential issues involved… for,
example a device B waiting for a device A to
provide input.

 Furthermore the input to device A might
disappear (become invalid) before device A
has completed its computations.

In OutDevice A Device B

Input might not stay

here for the length of

time A works on it

When input to A

changes, A’s output

may be invalid, yet

B might still be

busy.

Likewise. input to B is

changing this output may

become invalid / corrupted

while read by external device

 There are various issues involved such as:

 How does device A know when new data has arrived?

 How does device B know when device A has
completed?

 What if both devices need to be clocked, but aren’t
active all the time?

 What if you want to share address and data lines?

In OutDevice A Device B

handshaking

lines

.. That is where ‘handshaking’ can come to the rescue

OUTPUTS

 A sequential logic system typically
involves two parts:

Storage (aka “bistable” device)

Combinational logic (OR, AND, etc. gates)

INPUTS
Combinational

Logic Device

Storage

D
a
ta

D
a
ta

Another

combinational

logic device(s)

Another

combinational

logic device(s)

potentially shared data

busses. Possibly 2

separate busses for

full-duplex; one for read

and one for write

control lines (e.g., do

you want to read or

write. Are you done

setting all the bits. etc.)

Handshaking – making

sure the data gets there
Reconfigurable Computing

 Handshaking is a means to ensure reliable
transfer of data and/or control between
two devices that could be far apart (long
latencies between pins) or could be
operating at different clock frequencies.

 Essentially, handshaking provides
additional pins to synchronize the transfer
of data, so that data is sent when the
receiver is ready.

Handshaking is essentially a form of blocking or synchronous communication (i.e. leading from the lecture series on

parallel system design but now in the context of combinational logic designs).

 For effective data exchange:

Sender needs to first know when receiver
is able to receive data, and when the data
has been successfully received.

Receiver needs to know when the data is
ready to be sent to it, and when the sender
has determined that the receiver has
acquired the data.

 There are many types of handshaking,
but they are generally either:

Explicit handshaking

Implicit handshaking

Information based on Digilent training resources available at: https://reference.digilentinc.com/learn/courses/unit-3/start

https://reference.digilentinc.com/learn/courses/unit-3/start

 Explicit handshaking, basic 4-phase
handshake:
 This form of handshaking uses dedicated control signals (e.g. Rx

Ready and Tx Ready) to indicate the impending action from the
sender and readiness of the receiving device.

 The receiving device must indicate when it is ready to receive data,
and when it is done.

 The sending device must strobe (tell) the receiving device when
new data is ready for it, and when the data is no longer available.

Rx Ready

Tx Ready
Standard 4-phase handshaking

 In terms of implicit handshaking it
usually an assumption that the receiver
is ready to receive provided timing
constraints (such as synchronization
with a clock) is met.

Clock

WE

DATA data written

E.g. devise sending data assume receover will be ready. Data

must remain on the bus for at least one clock

 Generally need the following

Address bus

Data bus

Control lines

Chip / Device select lines (CS)

Write enable lines (WE)

Read enable lines (RE)

Looks familiar to Embedded Eystems I/O issues?

Well it is! But this time you are deciding the control lines. ☺

 Next lecture we look at a selection of
interfacing standards for developing your
own reusable IP cores.

 We also look at standard memory
interfaces and DMA transfers

 See SerialStream example to reinforce the
handshaking topics presented here

 For now though we continue on with
some latching and signal capture which
are essential ingredients in reliable
gateware interfaces

 Consider that you have system in which a
module produces an 8-bit result. But this
result, provided as a bus output, needs to
stream this byte out as a bit stream (that
could be sent to an UART).

 The block diagram of this system is
provided below illustrating what is needed

GenResult SerialStream
ask

clk

result tx

A positive edge on the ‘ask’

input causes GenResult to

produce a result which is

then sent to SerialStream

/

8

The 8-bit result of

GenResult is sent to

SrialStream to convert to

serial data.

When SerialStream receives the data

it sends bit 0 .. 7 of result, each bit on

a positive edge of clk. SerialStream

should not receive any other input

until is has completed this task.

 BUT there are problems posed in the
initial design as is:

GenResult SerialStream
ask

clk

result tx

A positive edge on the ‘ask’

input causes GenResult to

produce a result which is

then sent to SerialStream

/

8

The 8-bit result of

GenResult is sent to

SrialStream to convert to

serial data.

When SerialStream receives the data

it sends bit 0 .. 7 of result, each bit on

a positive edge of clk. SerialStream

should not receive any other input

until is has completed this task.

This is, at present, not a very robust design what happens if GenResult is send an ‘ask’ while it is still

busy? Does the asker need to know that GenResult has send on the result? What of SerialStream; it

should now allow a result to be sent before it is ready to send it. And, how will SerialStream know

when it has received a new input, e.g. if you want to send 0 and another 0, how will it know that you

want to send two 0s and not just one? No, in summary this initial version of the design is not robust.

Propose a better design that uses Handshaking to make it more robust….

 More robust design for GenResult and
SerialStream:

GenResult
SerialStream

ask

clk

result

tx

The ready line is high when

GenResult is ready to be

sent an ‘ask’. A positive

edge on the ‘ask’ input

causes GenResult to set

ready low, and later

produces a result which is

then sent to SerialStream

/

GenResult waits until SerialStream has its ready

line high before it sends result. To send a result,

write enable (we) is set low. Then result is set. Then

we is set high. When serial stream sets ready low

and send a write ack (wa), GenResults sets we low

(which confirms that the result has been sent to

SertialStream). GenResult only sets its ready back

to high when SerialStream sets its ready to high.

Initially SerialStream has its ready

line high. When we it receives a we it

reads data from the result input and

then sets ready low. It then sends bit

0 .. 7 of result, each bit on a positive

edge of clk. SerialStream sets ready

back to high after the last bit has

been sent.

ready
we

ready

reset

reset

Understandably, there are still some shortcomings to this design (e.g. GenResult could do with a timeout

incase SertialStream gets stuck), but it is a lot more robust than the earlier design.

wa

8

GenResult
module GenResult (reset, ask, ss_ready, ss_wa, ss_we, ready, result);

input rese, ask;

input ss_ready, ss_wa;

output reg ss_we;

output reg ready;

output reg [7:0] result;

// private registers

reg handle_ask;

// wait for a reset

always@ (reset)

begin

result <= 10;

ss_we <= 0;

ready <= 1;

handle_ask <= 0;

end

always@ (ask)

begin

if (handle_ask == 0)

begin

if (ss_ready == 1)

begin

handle_ask <= 1;

ready <= 0;

result <= result + 1;

ss_we <= 1;

end

end

end

always@ (posedge ss_wa)

begin

// assume that SerialStream is now busy with

// the request and will raise ready once ready again.

ss_we <= 0; // handshaking, that the write enable has been done

end

always@ (posedge ss_ready)

begin

ss_we <= 0; // just in case we missed the ack

handle_ask <= 0;

ready <= 1;

end

endmodule

SerialStream
module SerialStream (clk, reset, we, result, ready, wa, tx);

input clk, reset;

input we;

input [7:0] result; output reg ready; output reg wa; output reg tx;

// internal registers

reg start; reg endoff;

reg [8:0] mask; reg [7:0] sendb;

reg lower_wa; // used to set wa back to 0 after a clock

always@ (reset)

begin

start <= 0; ready <= 1;

endoff <= 0; tx <= 0;

wa <= 0; lower_wa <= 0;

mask <= 9'b0;

end

// wait for a we to arrive...

always@ (posedge we)

begin

ready <= 0; start <= 1;

mask <= 1; sendb <= result;

wa <= 1; lower_wa <= 1;

end

// wait for a we to arrive...

always@ (posedge clk)

begin

if (endoff == 1)

begin

endoff <= 0;

ready <= 1;

end else

begin // send the next bit

if (sendb & mask) tx = 1; else tx = 0; // not blocking assign

mask = mask << 1;

if (mask == 9'd256) endoff <= 1;

end

if (lower_wa == 1)

begin

wa <= 0;

lower_wa <= 0;

end

end

endmodule

You can access these files at: https://www.edaplayground.com/x/68ZH

https://www.edaplayground.com/x/68ZH

Testbench for GenResult and SerialStream
// EEE4120F Example for demonstrating use of handshaking in Verilog

module toplevel_tb ();

// Define registers that will be inputs and outputs to the modules being tested

reg clk; reg reset; reg ask;

wire ss_ready; wire ss_wa;

wire ss_we; wire ready;

wire tx; // wire that connects to some transmit line

wire [7:0] result;

GenResult uut_gr (reset, ask, ss_ready, ss_wa, ss_we, ready, result);

SerialStream uut_ss (clk, reset, ss_we, result, ss_ready, ss_wa, tx);

initial

begin

$display("reset ask ss_ready ss_wa ss_we ready result tx");

$monitor("%b %b %b %b %d %d %d %02d %b",

clk, reset, ask, ss_ready, ss_wa, ss_we, ready, result, tx);

// set up default values for data and control lines

clk = 0;

reset = 1;

ask = 0;

// generate a clock pulse to make sure reset takes

#5 clk = ~clk;

// lower reset

reset = 0;

#5 clk = ~clk;

// ask to generate and set a value

ask <= 1;

#5 clk = ~clk;

ask <= 0;

#5 clk = ~clk;

// run the clock for a while

repeat (30)

begin

#5 clk <= ~clk;

end

end

endmodule

You can access these files at: https://www.edaplayground.com/x/68ZH

https://www.edaplayground.com/x/68ZH

Testbench example output (when GenResult sends 11)

reset ask ss_ready ss_wa ss_we ready result tx

0 1 0 1 0 0 1 10 0

1 0 0 1 0 0 1 10 0

0 0 1 0 1 0 0 11 0

1 0 0 0 0 0 0 11 1

0 0 0 0 0 0 0 11 1

1 0 0 0 0 0 0 11 1

0 0 0 0 0 0 0 11 1

1 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 11 0

1 0 0 0 0 0 0 11 1

0 0 0 0 0 0 0 11 1

1 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 11 0

1 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 11 0

1 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 11 0

1 0 0 0 0 0 0 11 0

0 0 0 0 0 0 0 11 0

1 0 0 1 0 0 1 11 0

0 0 0 1 0 0 1 11 0

As you can see ss_ready gets set

when the 8 bits have been sent.

SerialStream starts sending here.

It’s sending in little endian, i.e. the

lowest bit is sent first (which is 1 in

the byte 000010112 that is sent.

RC Building Blocks:

Latching

(capturing Signals)
Reconfigurable Computing

 In order to capture the signals, you
need some storage

 Two basic types of storage:

Latches Flip-flops

 Latches Q = D

Changes state when the input states
change (referred to as “transparency”)

Can include an enable input bit – in which
case the output (Q) is set to D only when
the enable input is set.

 Flip-flop Q = D (Q changes when clocked)

A flip-flop only change state when
the clock is pulsed.

 Latches are used more in asynchronous
designs wire X, Y; assign X <= A; assign Y <= B;

 Flip-flips are used in synchronous
designs reg X, Y; X = A; Y = B;

 A “synchronous design” is a system
that contains a clock

You can of course mix synchronous and asynchronous, and this is particularly

applicable to parallel systems in which different parts of the system may run at

different speeds (e.g., the main processor working at 1GHz and specialized

hardware possibly operating asynchronously as fast as their composite pipelined

operations are able to complete)

SR Latch

S R Q Q

0 0 1 1

0 1 0 1

1 0 1 0

1 1 x x

A basic NAND latch has two stable states:

State 1 Q = 1 not_Q = 0

State 2 Q = 0 not_Q = 1

And an unstable state in which both S and R are set (which can

cause the Q and not Q lines to toggle)

S-R Latch (set / reset latch)

S

R

Q

Q

Symbol

Y

A

B

X
S

R

Q

Q

Example circuit available at: https://www.edaplayground.com/x/P4Sw

S=R=1 is often called the memory or no-

change state, by x I mean the line

doesn’t change from what it was before.

https://www.edaplayground.com/x/P4Sw

Gated SR Latch: a latch with enable

A

B

X

Y

S

CLOCK

R

Q

Q

CLK

S

R

Q

Q

Combinational logic circuit

with a clock (or enable)

input connected.

Usually, this type used in

digital systems.

It of course costs more in

transistors!!

Example signals

or “gate” input

Only changed on clock pulse

CK

S

R

Q

Q

Gated SR-Latch

Symbol

The JK and D Flip-flops

CK

Q

Q

J

K

The standard JK flip-flop is

much the same as a gated

SR latch, modified so that

Q toggles when J = K = 1

CK

Q

Q

J

K

D

CK

The D-type flip flop (which

you may want to use in

Prac5 to store data) is a

JK flop flop modified (see

left) to hold the state of

input D at each clock

pulse.

JK flip-flop

D flip-flop

clock D Q

0 0 X

1 1 0

2 1 1

3 0 1

… … …

T-type Flip-flop

The T-type flip-flops toggle

the input. Q = not Q each

time T is set to 1 when the

clock pulses

T flip-flop

Clock T Q

0 1 0

1 0 1

2 1 1

3 0 0

… … …

CK

Q

Q

J

K

CK

T

Preset and Clocking

CK

Q

Q

J

K

PR

CL

Preset line (PR) and clear

line (CL) are asynchronous

inputs used to set (to 1) or

clear the value stored by

the flip-flop.

This is a type of structure one may need to use if init blocks

were synthesised to initialize register values.

Edge triggered devices

A note on notation:

Edge-triggered inputs are shown using a triangle.

Negative edges triggered inputs are shown without a circle on the incoming line.

in

Negative edge triggered

in

Positive edge triggered

End of Lecture

Any Question??

RC Platform Case Studies

Large & small FPGA-based

RC systems
EEE4120F

(These slides, 46- onwards, planned to be a separate lecture and discussion of these innovative designs)

Why should we look at some

RC Platform Case Studies?

This provides some interesting examples of

what various companies and research

organizations have done with FPGA platforms.

It’s to broaden your perspective on how FPGAs

might be used…

 Large-scale FPGA-based RC system
examples
PAM, VCC, Splash

 Small-scale FPGA-based RC system
examples
PRISM

Algotronix CAL,
XC620,

Cray Research XD1,

SRC

Silicon Graphics RASP

Large-scale RC Systems
A look at platforms architectures

 Programmable Active Memories (PAM)

Produced by Digital Equipment Corp (DEC)

Used Xilinx XC3000 FPGAs

Independent banks of fast static RAM

Host

CPU FPGA FPGA FPGA FPGA

FPGA FPGA FPGA FPGA

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM

SRAMDRAM

Digital Equipment Corp. PAM system (1980s)
Image adapted from Hauck and Dehon (2008) Ch3

 Virtual Computer Corporation (VCC)*

 First commercially commercial RC platform**

 Checkerboard layout of

 Xilinx XC4010 devices and

 I-Cube programmable interconnection devices

 SRAM modules on the edges

** Hauck and Dehon (2008)

…

…

… … … … … …… …

…

VCC Virtual Computer

FPGASRAM

SRAM FPGA

FPGASRAM

I-Cube FPGA

FPGAFPGA

I-Cube FPGA

I-Cube I-Cube FPGA

SRAM

SRAM

FPGAFPGA FPGA

I-Cube I-Cube FPGA SRAM

* The Virtual Computer Corporation’s (VCC) Virtual Computer (or Virtual Compacted Computer) architecture. http://commacorp.com/Virtual_Computer.pdf

http://commacorp.com/Virtual_Computer.pdf

Summary of the Splash system

Developed initially to solve the problem of mapping the human genome and other similar problems. Design

follows a reconfigurable linear logic array. The SPLASH aimed to give a Sun computer better than

supercomputer performance for a certain types of problems. At the time, the performance of SPLASH was

shown to outperform a Cray 2 by a factor of 325. FPGAs were used to build SPLASH, a cross between a

specialized hardware board but more flexible like a supercomputer. The SPLASH system consists of software

and hardware which plugs into two slots of a Sun workstation. **

* Hauck and Dehon (2008) SRC Splash version 2

Dedicated

controller

…

…

…

…

SRAM

FPGA

FPGA

SRAM

FPGA

SRAM

FPGA

SRAM

FPGA

SRAM

FPGA

SRAM

FPGA

SRAM

Crossbar

• Dev. by Super Computer Research (SCR) Center ~1990

• Well utilized (compared to previous systems).

• Comprised linear array of FPGAs each with own SRAM *

**Adapted from: Waugh, T.C., "Field programmable gate array key to reconfigurable array outperforming supercomputers," Custom Integrated

Circuits Conference, 1991., Proceedings of the IEEE 1991 , vol., no., pp.6.6/1,6.6/4, 12-15 May 1991 doi: 10.1109/CICC.1991.164051

Illustration of the

SPLASH design
(adapted from *)

Small-scale RC Systems
A look at platforms architectures

 Brown University’s PRISM

Single FPGA co-processor in each computer in a
cluster

Main CPUs offloading parallelized functions to
FPGA

 Algotronix

Configurable Array Logic (CAL) – FPGA featuring
very simple logic cells (compared to other FPGAs)

 Later become XC6200 (when CAL bought by Xilinx)

* Hauck and Dehon (2008)

 Reading

Hauck, Scott (1998). “The Roles of FPGAs
in Reprogrammable Systems” In
Proceedings of the IEEE. 86(4) pp. 615-
639.

This paper by Hauck gives a view on where FPGAs where expected to be

utilized and how they could significantly change the way systems are

designed. It’s a fairly early paper, considering the short history of FPGAs,

and indeed the Hauck’s views are accurate but also underestimates the

versatility and the breadth of domains that these technologies have reached.

Image sources:

man working on laptop – flickr

scroll, video reel, big question mark – Pixabay http://pixabay.com/ (public domain)

Processing Gears and Spanner – MaxPixel https://www.maxpixel.net (CC0)

some diagrammatic elements are from Xilinx ISE screenshots

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particularly want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

References: Verilog code adapted from

http://www.asic-world.com/examples/verilog

http://pixabay.com/
https://www.maxpixel.net/Process-Configuration-Gears-Machine-Cogs-Icon-5758859
https://www.maxpixel.net/
http://www.asic-world.com/examples/verilog

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Purpose of this lecture
	Slide 4: When to use assign?
	Slide 5: Using blocking and non-blocking assignments in simulation
	Slide 6: Potential pitfalls
	Slide 7: The unconditional always
	Slide 8: Example: simulating a clock
	Slide 9: Example: simulating a clock
	Slide 10: Example: simulating a clock
	Slide 11: Configuration Architectures
	Slide 12: Configuration Architectures
	Slide 13: Configuration Architectures
	Slide 14: Configuration Architectures
	Slide 15: Configuration Architectures
	Slide 16: Optional Additional Reading (for configuration architectures)
	Slide 17: RC Building Blocks: Digital Signals and Data Transfers
	Slide 18: Overview of digital signals
	Slide 19: Overview of digital signals
	Slide 20: Digital logic modular design issues
	Slide 21: Handshaking – making sure the data gets there
	Slide 22: Interface Handshaking basics
	Slide 23: Handshaking
	Slide 24: Handshaking
	Slide 25: Explicit Handshaking
	Slide 26: Implicit Handshaking
	Slide 27: Digital Signal Interfaces
	Slide 28: Interface / Handshaking Standards
	Slide 29: Example: Handshaking in Verilog
	Slide 30: Example: Handshaking in Verilog
	Slide 31: Example: Handshaking in Verilog
	Slide 32
	Slide 33
	Slide 34
	Slide 35: RC Building Blocks: Latching (capturing Signals)
	Slide 36: Digital Signal Capture and Storage
	Slide 37: Difference between latch and flip-flop
	Slide 38: When to use a latch or a flip-flop
	Slide 39: SR Latch
	Slide 40: Gated SR Latch: a latch with enable
	Slide 41: The JK and D Flip-flops
	Slide 42: T-type Flip-flop
	Slide 43: Preset and Clocking
	Slide 44: Edge triggered devices
	Slide 45: End of Lecture
	Slide 46: RC Platform Case Studies Large & small FPGA-based RC systems
	Slide 47
	Slide 48: List of Case Studies
	Slide 49: Large-scale RC Systems
	Slide 50: Large RC System - PAM
	Slide 51: Large RC System - VCC
	Slide 52: Large RC System - Splash
	Slide 53: Small-scale RC Systems
	Slide 54: Small RC Systems
	Slide 55: Conclusion & Suggested Reading
	Slide 56

