
Lecture 19

HDL Imitation Method, Benchmarking and
Amdahl's for FPGAs

Lecturer:

Simon Winberg
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

HDL HDL Imitation Amdahl’s for FPGA

http://creativecommons.org/licenses/by-sa/4.0/

 HDL Imitation Method

 Using Standard Benchmarks for FPGAs

 Amdahl’s Law and FPGA

An approach to ‘golden measures’

& quicker development

The same method can work with Python, but C is better suited due to its typical use of pointer.

void mymod

(char* out, char* in)

{

out[0] = in[0]^1;

}

module mymod

(output out, input in)

{

out = in^1;

}

or ‘C-before-HDL approach to starting HDL designs.

 This method can be useful in designing
both golden measures and HDL modules in
(almost) one go …

 It is mainly a means to validate that you
algorithm is working properly, and to help
get into a ‘thinking space’ suited for HDL.

 This method is loosely based on approaches
for C→HDL automatic conversion (discussed

later in the course)

HDL Imitation approach using C

C code converted to VHDL

 C program: functions; variables;

based on sequence (start to end) and the use of
memory/registers operations

 VHDL / Verilog HDL:

Implements an entity/module for the procedure

 Standard C characteristics
Memory-based
Variables (registers) used in performing

computation
Normal C and C programs are sequential

 Specialized C flavours for parallel
description & FPGA programming:
Mitrion-C , SystemC , pC (IBM Parallel C)

System Crafter, Impulse C , OpenCL
FpgaC Open-source (http://fpgac.sourceforge.net/) –

does generate VHDL/Verilog but directly to bit file

http://fpgac.sourceforge.net/

 Best to simplify this approach, where
possible, to just one module at a time

 When you’re confident the HDL works,
you could just leave the C version behind

 Getting a whole complex design together
as both a C-imitating-HDL program and a
true HDL implementation is likely not
viable (as it may be too much overhead
to maintain)

Example Task:

Implement an countup module that counts up on target value, increasing its a

counter value on each positive clock edge. When the target value is reached

set the counter_done flag and stop counting.

Approach:

1. Sketch the design of the needed module and its interface.

2. Think what registers are needed, including any regs to test the module.

3. Write a quick C implementation that can act as both a quick starting point

and test of the plan, and which can then be easily converted to HDL.

4. Test the C program, make sure it is behaving as anticipated.

5. Covert the program to HDL

6. Test the HDL and make sure it is also working.

Note: obviously this is a very simple example for illustrative purposes. You are unlikely to use this

approach for such simple situations especially once you are feeling confident in HDL coding; but for more

complex problems that can be a valuable time-saver and ‘sanity-check’ for your HDL code.

Example Task:

Implement an countup module that counts up on target value, increasing its a

counter value on each positive clock edge. When the target value is reached

set the counter_done flag and stop counting.

1. Sketch the design of the needed module and its interface….

countup

clk counter_done

/

32

upto

enable

reset

/

32

Design note: In standard Verilog you cannot have global signals. Each module needs to

be quite stand-alone, it can only be connected to via its ports; you cannot somehow link to

a global register without connecting through a port. You can have a ‘tristate’ register that

you can either read or write (like a variable parameter).

counter

2. Think what registers are needed, including any regs to test the module.

countup

clk counter_done

/

32

upto

enable

reset

/

32

counter

Looking at the module interface design (copied below) it is clear that we will

need to have registers for:

• clk : a bit

• enable : a bit

• reset : a bit

• upto : a bus (the same size as counter)

• counter : a bus (of 32 bits, could consider it an unsigned int)

• counter_done : a bit

The inputs to the module are: clk, enable, reset and upto.

The outputs are: counter and counter_done

Note that here counter is

considered an output, the value

to be stored within countup.

3. Write a quick C implementation that can act as both a quick starting point

and test of the plan, and which can then be easily converted to HDL.

We can start with implementing the module… then we can think about

implementing the testbench, essentially same approach as using Verilog.

// Modules to test //////////////////////////////////

void countup (

// inputs:

bit clk, bit enabled, bit reset, UNSIGNED_BUS upto,

// outputs

UNSIGNED_BUS& counter, // note would be defined as reg in countup, i.e. stores value

bit& counter_done)

{

static bit reached;

// check if reset

if (reset.now == 1) {

counter = 0;

CLR(reached); // not yey reached the upto target

} else

// this would be an always@ in Verilog....

if (POSEDGE(clk)) {

if ((enabled.now == 1) && (reached.now==0)) {

counter = counter + 1;

if (counter==upto) {

SET(counter_done);

SET(reached);

}

} // end if enabled==0

}

}

Note the .now is explained in a moment,

as is CLR, SET and POSEDGE.

As well as why ‘&’ is there.

(explaining the C macros used in previous HDL imitation code)

// define a bit type

typedef struct bit_struct {

unsigned char pre, now;

} bit;

// define a unsigned bus type, for unsigned values

typedef unsigned UNSIGNED_BUS;

// define a bus type

typedef int SIGNED_BUS;

#define SET(x) {x.pre=x.now; x.now=1;}

#define CLR(x) {x.pre=x.now; x.now=0;}

#define TOGGLE(x) {x.pre=x.now; x.now=!x.now;}

#define POSEDGE(x) (x.now>x.pre)

#define NEGEDGE(x) (x.pre<x.now)

For bits we usually want to know if it has

changed, if there was a posedge or negedge so

we need the previous value, thus using a struct.

This is to more remind us that we need to

implement this as a bus, e.g. input [31:0] bus;

Since we defined a bit type we

need some operations for that. I

we used proper C++, a bit class

could have been implemented to

do the same thing more

elegantly. In Verilog you define a

function for each of these so that

the code looks the same.

This is the equivalent of a positive and

negative edge, since we know the

previous value of a bit. Again, if we used

C++ this could become a function that

receives a bit as input

4. Test the C program, make sure it is behaving as anticipated.

For this we essentially need to write a testbench for the imitated module.
int main() {

// Define output and inputs for top-level module

unsigned n_clk; // for iterating clock pulses

bit clk; // clock bit

// registers to be used to pass to 'toplevel' module to test

UNSIGNED_BUS counter, upto;

bit enable, reset, counter_done;

// initialize values, this is kind of equivalent initial block in Verilog...

CLR(clk); // remember we defined CLR to do equivalent of Verilog clk=0

CLR(counter_done); SET(reset); SET(enable);

counter = 0; upto = 10; // set target to count up to

// print tables of register log

printf("clk,counter,counter_done\n");

// clock iterator

for (n_clk=0; n_clk<CLOCKS; n_clk++) {

// this is somewhat like a monitor statement

printf(" %d,%07d,%01d\n",clk.now,counter,counter_done.now);

// call te top-level module to be tested

countup(clk,enable,reset,upto,counter,counter_done);

// toggle the clock

TOGGLE(clk);

// see if a few clocks have passed to lower reset

if (n_clk == 2) CLR(reset);

}

return 0;

}

Note here we are kind of

setting the simulation

duration by having a

counter for the number

of clocks (n_clk) to

iterate through.

$ CasHDL

Test C-like-HDL Module!

clk,counter,counter_done

0,0000000,0

1,0000000,0

0,0000000,0

1,0000000,0

0,0000001,0

1,0000001,0

0,0000002,0

1,0000002,0

…

0,0000009,0

1,0000009,0

0,0000010,1

1,0000010,1

0,0000010,1

…

0,0000010,1

1,0000010,1

And you can see from this log that

the program words as anticipated,

after counter reaches 10 (the upto

value) it stops counting up.

So this basically means that you C

program is working properly. It

would then be a matter of

translating the C into Verilog….

// Countup module counts up to 'upto' value

module countup (

// inputs:

clk, enabled, reset, upto,

// outputs

counter, counter_done);

// toplevel module to test

input clk, enabled, reset;

input [31:0] upto;

output reg counter_done;

// local regsiters

reg reached;

output reg [31:0] counter;

always@(reset or posedge(clk))

begin

// check if reset

if (reset == 1) begin

counter = 31'b0;

reached = 0; // not yet reached the upto target

counter_done = 0;

end else

// this would be an always@ in Verilog....

if ((enabled==1) & (reached==0)) begin

counter = counter + 1;

if (counter==upto) begin

counter_done <= 1;

reached=1;

end

end // end if done==0

end // always

endmodule

5. Covert the program to HDL

Try on: https://www.edaplayground.com/x/4ELg

https://www.edaplayground.com/x/4ELg

6. Test the HDL and make

sure it is also working.

// countup_tb testbench

module countup_tb ();

wire [31:0]counter;

reg [31:0] upto;

reg enable;

reg reset;

reg clk;

wire counter_done;

// instantiate the module

countup uut (clk,enable,reset,upto,counter,counter_done);

initial

begin

$monitor("%b %d %b",clk,counter,counter_done); // Print the welcome message

clk = 0;

reset = 1;

enable = 1;

upto = 10; // set target to count up to

#5 clk = ~clk; // apply the reset

reset = 0;

#5 clk = ~clk; // apply the dropped reset

repeat (20) // print tables of register log

begin

#5 clk = ~clk;

end

end

endmodule

Try on: https://www.edaplayground.com/x/4ELg

https://www.edaplayground.com/x/4ELg

iverilog '-Wall' '-g2012' design.sv testbench.sv && unbuffer vvp a.out

0 0 0

1 1 0

0 1 0

1 2 0

0 2 0

1 3 0

0 3 0

1 4 0

0 4 0

1 5 0

0 5 0

1 6 0

0 6 0

1 7 0

0 7 0

1 8 0

0 8 0

1 9 0

0 9 0

1 10 1

0 10 1

1 10 1

0 10 1

Done

$ CasHDL

Test C-like-HDL Module!

0,0000000,0

1,0000000,0

…

0,0000002,0

1,0000002,0

…

0,0000009,0

1,0000009,0

0,0000010,1

1,0000010,1

0,0000010,1

…

0,0000010,1

1,0000010,1

6. Test the HDL and make

sure it is also working.

(run the Verilog version

to see same result as for

C version)

But First …

 Every heard of DMIPS?

 In relation to a VAX?

 How bizarre… how is that possibly of
any relevance to HPEC or FPGAs?...

Well, let’s find out in the next slide …

 Limitations of MIPS and FLOPS
 MIPS alone are not all that meaningful for benchmarking

because 1 CISC instruction may be worth many RISC
instructions (but the CISC might still complete the task
faster)

 Similarly MFLOPS alone, while a bit more useful, do not give
a sufficiently full picture, the processor could do lots of
FLOPS but be low on other things (e.g. memory operations)

 DMIPS =
 Dhrystone MIPS (Million Instructions Per Second). Shows

number of iterations of the Dhrystone loop repeated per
second. More holistic performance measure aligned to likely
processing needs

 DMIPS = Dhrystone_score / 1,757
 The value 1,757 is the number of Dhrystones per second

obtained on the VAX 11/780, nominally a 1 MIPS machine

I’ll explain each of these …

 Whetstone is a collection of commonly used
computation tasks, repeated in a loop, and the
time the loop takes to complete equates to the
Whetstone rating.

http://www.coremark.org/home.phpFor further details see:

http://www.coremark.org/home.php

 The Dhrystone benchmark contains no floating
point operations; it is works similarly to the
Whetstone, but uses computations appropriate
for fixed-point or integer based applications.

http://www.coremark.org/home.phpFor further details see:

http://www.coremark.org/home.php

 CoreMark is a smaller benchmark

 Developed by the Embedded Microprocessor
Benchmark Consortium (EEMBC)

 Focuses on the CPU core, similar to Dhrystone.

 CoreMark is intended to
 Execute on any processor, incl. small micro-controllers.

 Avoid issues such as the compiler computing the work
during compile time

 Use real algorithms rather than being mostly synthetic.

 CoreMark has established rules for running the
benchmark and for reporting the results.

http://www.coremark.org/home.phpFor further details see:

http://www.coremark.org/home.php

 Clearly Whetstone, Dhrystone and
CoreMark are relevant to HPC generally
(and were originally developed with
microprocessors in mind)

 HOWEVER: These techniques apply to
FPGAs as well, especially nowadays where
you may want to use an FPGA for e.g.
intensive signal processing and want to
compare your FPGA implementation to a
more standard CPU implementation.

Using Dhrystone with an FPGA
(a case study)

Hint: if you want to be rather ambitious and fancy you might consider using a benchmark

approach similar to this in your YODA project!

Ref source: “Running the Dhrystone 2.1 Benchmark on a Virtex-II Pro PowerPC Processor” by Paul Glover, 2005.

Available: https://www.xilinx.com/support/documentation/application_notes/xapp507.pdf

Example of when & why you might use a

benchmark such as Dhrystone on a FPGA.

The below right presents results on an investigation by

Glover (2005) on running the PowerPC softcore

processor on an FPGA using

different configurations. As you

can see, the Dhrystone

performance of the platform in

response to increased clock

speed was pretty much 1:1.

This was not necessarily

expected as increasing the

clock could cause higher

temperatures and greater

resistance in gate delays.

Clock
Increase

Clock
Speed
(MHz) DMIPS

Perfect
linear

1 100 135 -

2 200 271 270

3 300 407 406.5

4 400 542 542.531

https://www.xilinx.com/support/documentation/application_notes/xapp507.pdf

Applying Amdahl to FPGAs
(a case study)

Hint: you might want to consider using this sort of approach in your YODA project!

Another hint …. Your lecture might well be infatuated with this topic of applying Amdahl to FPGAs,

so it might well appear in a test or exam ☺

Instruction Pool

D
at

a
P

oo
l

When contrasting FPGA-based solutions to

CPU-based solutions, in considering speedup of

an operation, the comparison is likely around a

multicore perspective, i.e. looking at both the

FPGA side and CPU side fitting in with Flynn’s

MIMD model (i.e. multiple instructions on multiple

different data source – see diagram on right).

Speedup = Tp1 /Tp2

Where

Tp1 = Run-time of original (or non-optimized) program

Tp2 = Run-time of optimised program

1

f
(1 – f) +

n

Speedupparallel =

Amdahl’s Law

f = fraction of computation that can be parallelized

1-f = fraction that cannot be parallelized / startup

CPU-based

 Initialization
 Loading in the data

 Creating the threads

 Data partitioning

 Starting the threads

 Parallel Work
 Threads working on tasks

 Possible comms/IO blocks

 Join / finalizing (if need)

 Waiting for threads to
complete

 Combining results etc.

FPGA-based

 Initialization / start-up
 Programming the FPGA

 Reset operations

 Host->FPGA comms;
configuring cores (setting
parameters / regs)

 Parallel Work
 Cores doing processing

 Possible IO/synch blocks

 Finalizing (if need)

 Doing clean-up operations

 FPGA->Host comms; e.g.
writing results back to host.

1

f
(1-f) +

n

Speedupparallel =

(Basic) Amdahl’s Law for FPGA-based processors

f = fraction of computation running on the cores

1-f = fraction of start-up and configuration time

n = number of parallel processors / cores

start-up cores working finalize

Still going to have a similar view if

you assume that the parallel section

provides acceleration as doing the

parallel part ‘n’ times as fast.

BUT a major problem with this is that ‘n’ is a potentially

faulty component for CPU vs FPGA or even FPGA vs

FPGA performance predictions. It assumes an

approach of using multiple of the same cores to boost

the parallel performance.

So, applying Amdahl in this case is not necessarily fair or logical…

although one often does want a means to compare speedup between a

CPU-based and a FPGA-accelerated system. Some parts of Amdahl’s

basic formula given here is useable, but you are comparing potentially

very different systems, e.g. a bit like comparing a rocket to an airplane for

getting a payload from A to B; they can both get the job done but they

have different loading and other mechanisms to do so.. ultimately it is the

speedup T1/T2 that you want out at the end.

Back to some Verilog…
(next learning set)

Image sources:

Flickr

Pixabay http://pixabay.com/ (public domain)

Product logos/icons from applications concerned

Chip image – Wikipedia open commons

Desert photo snippet – segment from photo on flickr

Ruler – Open Clipart www.openclipart.org (public domain)

ImpulseC – images from http://www.impulsec.com/products.htm

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/
http://www.openclipart.org/
http://www.impulsec.com/products.htm

	Slide 1
	Slide 2: Lecture Overview
	Slide 3
	Slide 4: HDL Imitation Method
	Slide 5: HDL Imitation approach using C
	Slide 6: HDL Imitation in C & good references to review in using this method
	Slide 7: HDL Imitation: where it’s useful
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Terminology buffs?
	Slide 21: Why MIPS and FLOPS are not enough
	Slide 22
	Slide 23: Whetstone, Dhrystone and CoreMark
	Slide 24: Whetstone, Dhrystone and CoreMark
	Slide 25: Whetstone, Dhrystone and CoreMark
	Slide 26: Relevance to FPGA
	Slide 27
	Slide 28: Using Dhrystone with an FPGA
	Slide 29
	Slide 30: Applying Amdahl to FPGAs
	Slide 31: Applying Amdahl to FPGAs
	Slide 32: Applicability of Amdahl to FPGAs
	Slide 33
	Slide 34

