
Lecture 18
FPGA & CPU Performance Comparison

FPGA Families

Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Click on

speaker icon to

hear narration

http://creativecommons.org/licenses/by-sa/4.0/

 FPGA performance evaluation

 FPGA vs CPU performance

 FPGA families

 YODA issues

Evaluating Performance
Evaluating synthesis (simplified) of an FPGA design

HDL to FPGA execution & LE cost (1)
In order to implement an HDL design, the design need to be decomposed and

mapped to the physical LBs on the FPGA and the interconnects need to be

appropriately configured.

o
u
t

LB

LB

LB

LE

AND Gate

NAND Gate

In this explanatory scenario, we are using a very basic FPGA that has three logic

blocks (LBs), each logic block having only a few logic elements. The logic elements

in this example are just AND gates and OR gates.

HDL to FPGA execution & LE cost (2)
Let us consider that we want to map the following example logic functions to the

FPGA. In other words, we want to figure out how the FPGA will be set up so that it

will complete the desired operation when input is applied.

o
u
t

LB

LB

LB

LE

AND Gate

NAND Gate

Example logic functions are:

x = AND(e,f,g)

y = AND(b,NAND(NAND(b,c),d))

out = NAND((NAND(x,y),NAND(a,y))

Note that x and y are intermediate wires

(1)

(2)

HDL to FPGA execution & LE cost (3)
o
u
t

LB

LB

LB

LE

AND Gate

NAND Gate

Example logic functions are:

x = AND(e,f,g)

y = AND(b,NAND(NAND(b,c),d))

out = NAND((NAND(x,y),NAND(a,y))

Note that x and y are intermediate wires

This is a view of how this logic circuit would get mapped to contain the

required logic function (or combinational logic circuit). It happens that there

is just enough logic elements to satisfy this design.

x
y

But what is the execution time cost of this circuit?

You can listen to some of my discussion about working this out

by listening to the next sound clip …

Otherwise,

if you’re impatient and want to just get into the process of manually

working out performance of a simple circuit, then skip to the next slide.

o
u
t

LB

LB

LB

LE

AND Gate

NAND Gate

x
y

LE cost = 8 and LB cost = 3

HDL to FPGA execution & LE cost

Map ‘AND(e,f,g)’ to LB1

In order to implement an HDL design, the design need to be decomposed and

mapped to the physical LBs on the FPGA and the interconnects need to be

appropriately configured.

Example:

x = AND(e,f,g)

y = AND(b,NAND(NAND(b,c),d))

out = NAND((NAND(x,y),NAND(a,y))

o
u
t

x
y

Map ‘NAND((NAND(x,y),NAND(a,y))’

to LB2

Map ‘AND(b,NAND(NAND(b,c),d)) ’ to LB3

Costing: 3 LBs, 8 LEs (assuming LBs have LEs that are AND or NAND gates)

back-tracing

Animation showing back-tracing

Applied to determine execution time.

LB

LB

LB

LE

In this example, LE are the gates and LBs are the

grey blocks they are within.

 The previous slide didn’t show whether the
connections were synchronized (i.e., a shared clock)
or asynchronous – since they are all logic gates and,
no clocks imply it is probably asynchronous.

 Determining the timing constraints for synchronous
configurations are generally easier. Because
everything is related to the clock speed. Still, you
need to keep in mind cascading calculations.

 For asynchronous use, the implementation could run
faster. But can also become a more complicated
design. And make it more difficult to work out the
timing…

 Keep in mind that the propagation delays for the various
gates / LUTs may be different. In the previous example
circuit we could assume each AND takes 6ns to stabilise,
and the NANDs 10ns to stabilise.

 So, time taken to compute output out is =

MAX OF (time to compute x, time to compute y) + 2x10ns

= (2x10ns+6ns) + 20ns = 46ns = pretty fast!! Or is it??

Compared to a 1GHz CPU using just registers (and no

mem access)?

Try this calculation for yourself ...

(assume each instruction takes on avg. 3 clocks due to pipeline,

data dependencies, etc, as worst case performance on a

RISC processor)

Comparing to CPU speed

CPU running at 1GHz → each clock 1ns period

Assume each instruction takes ~ 3 clocks each due to pipeline etc

CODE:

int doit (unsigned a, b, c, d, e, f, g) {

unsigned x = AND(e,f,g);

unsigned y = AND(b,NAND(NAND(b,c),d))

out = NAND((NAND(x,y),NAND(a,y))

return out;

}

unsigned t1 = AND(e,f); → 1 instruction, i.e. AND t1,e,f

unsigned x = AND(t1,g);

unsigned t1 = NAND(b,c)

unsigned t2 = NAND(t1,d)

unsigned y = AND(b,t2)

t1 = NAND(x,y)

t2 = NAND(a,y)

out = NAND(t1,t2)

in all 8 instructions → 8 x 3 clocks ea.

= 24 ns (assuming all registers pre-loaded)

A speed-up of 1.92 over the FPGA case

But some of these

Can’t be done as just 1

RISC instruction.

 An important element included in FPGA
designs nowadays are Digital Clock
Manager (DCM) blocks.

 These are used to eliminate* clock
distribution delays.

 They can also increase or decrease the
frequency of the clock.

 We will look at PLLs later in the course.

* or at least greatly reduce these clock distribution delays

FPGA Families
EEE4120F

Providing a broad variety of different performance, costing,

size and tolerance options.

 The ‘Big 2’ (most commonly used)

Xilinx, now owned by AMD, around 2984 employees
(in Xilinx division)

 Intel FPGA (i.e. Intel’s acquisition of Altera) (guessing

from, Altera stats) around 2500 employees*

 The others pretty big ones…

Actel (Microsemi Corp) – around 2200 employees*

 Lattice Semiconductor Corp – around 700 employees*

* These stats are a couple of years old.

Audio annotations end at this point

Please look over the following slides to become

a bit more familiar with these FPGA

manufactures, and types of FPGAs that are

available.

Image source: Max Pixel CC0
https://www.maxpixel.net/Memo-Paper-Sticky-Note-Post-it-Office-Note-150262

https://www.maxpixel.net/Memo-Paper-Sticky-Note-Post-it-Office-Note-150262

 Xilinx
Focusing on high performance and high capacity

Vertex family (such as Vertex 7)

Virtex UltraScale+
Extremely (some might say insanely) high-performance

9 million logic cells, up to 1.5 terabits/sec DDR4 bandwidth
and up to 4.5 terabits/sec transceiver bandwidth

Provides lower-cost options with high capacity (e.g.
Spartan 6 family)

Range of variations, e.g. low power options,
economy (lower capacity) models.

Note that the top performance FPGA changes over time and is not necessarily

consistently one or other of the manufacturers

 Altera

Stratix: higher performance and density models
(e.g. Startix-10)

Arria: mid-range, lower-power, but also lower
performance and denisity compared to Stratix.

Cyclone: lowest cost option, also aimed at low
power, cost sensitive and mobile applications

 Actel

Focuses on providing the lowest power, and
widest range of small packages

IGLOO : low power, small footprint

SmartFuson : Mixed FPGA and ARM
processor

RTAX/RTSX : radiation tolerant and very high
reliability.

 Lattice

Range of options (low power; high
performance; small package)

Own specialized development tools

(of these four, this one is the only firms not
in California; they are currently in Oregon)

 Others

Achronix – focusing on building the fastest
FPGAs (not necessarily highest capacity)

Tabula – unique FPGA technology
‘SpaceTime’, focusing on highest capacity
and memory capabilities

Memory jogger…

Q: Name a high-capacity FPGA family.

A: Xilinx Vertex (e.g. ver 7+) / Altera Stratix (ver 10+)

Q: Which of the following is a FPGA manufacturer ?

(a) Acrobatics

Note that the producers are constantly bringing out new versions so this slide may get stale quite quickly.

(b) Geometrix

(c) Achronix

Onwards to distributed and shared memory architecture models …

 References sources used include:
Todman, Timothy J., et al. "Reconfigurable

computing: architectures and design
methods." Computers and Digital Techniques,
IEE Proceedings-. Vol. 152. No. 2. IET, 2005.

Stavinov, Evgeni. 100 Power Tips for FPGA
Designers. Evgeni Stavinov, 2011.

 Acknowledgement
Thanks to John-Philip Taylor (TA) for time

taken to review slides and spotting typos and
inaccuracies.

Image sources:

man working on laptop – flickr

measuring tape – Wikimedia Open Commons https://commons.wikimedia.org

(public domain)

scroll, video reel – Pixabay http://pixabay.com/ (public domain)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particularly want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

References: Verilog code adapted from

http://www.asic-world.com/examples/verilog

https://commons.wikimedia.org/
http://pixabay.com/
http://www.asic-world.com/examples/verilog

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Evaluating Performance
	Slide 4: HDL to FPGA execution & LE cost (1)
	Slide 5: HDL to FPGA execution & LE cost (2)
	Slide 6: HDL to FPGA execution & LE cost (3)
	Slide 7
	Slide 8: HDL to FPGA execution & LE cost
	Slide 9: Timing calculations
	Slide 10: Async Timing calculations
	Slide 11: Comparing to CPU speed
	Slide 12: Digital Clock Manager (DCM) blocks
	Slide 13: FPGA Families
	Slide 14: The FPGA Manufacturers
	Slide 15
	Slide 16: About the FPGA Families
	Slide 17: About the FPGA Families
	Slide 18: About the FPGA Families
	Slide 19: About the FPGA Families
	Slide 20: About the FPGA Families
	Slide 21: Memory jogger…
	Slide 22
	Slide 23: References & Acknowledgements
	Slide 24

