
Lecture 16

More Verilog & Statemachine

Lecturer:

Simon Winberg

module myveriloglecture (wishes_in, techniques_out);

…

// implementation of today’s lecture

…

endmodule

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
statemachine

http://creativecommons.org/licenses/by-sa/4.0/

 Brief recap

 Busses and Endianness

 Functions in Verilog

 Implementing state machines

 Modules are defined in Verilog as follows:

module mymodule (a, b, x, y);

input a, b; // these are inputs, usually first

output x, y; // outputs, listed usually after inputs

x <= or(a,b); // these all executed at same time:

y <= and(a,b);

endmodule // no semicolon needed after endmodule

 The initial block is
like a constructor for
a Verilog module in
simulation. It is
activated the first
time the module
starts up.

 Used in simulation
to set up conditions
and to implement
test benches.

module testbench; // top level module

wire a, b, x; // set up some signals

add myadd(a,b,x); // module to test

myAnd_tb1 tb(a, b, x); // use this test

endmodule

module myAnd_tb1(a,b,x);

input a,b;

output x;

reg a, b; // registered inputs

initial begin

// log these signals as follows:

$monitor ($time,

"a=%b, b=%b, x=%b", a, b, x);

// exercise the signals

a = 0; b = 0;

#10 b = 1;

#10 a = 1;

#10 b = 0;

#10 $finish; // tell simulator to quit

end // end initial

endmodule

 The monitor operation is sensitive to a
selection of signals. Whenever one of
the signals change, it prints out
whatever is requested to be printed,
using a printf type formatting

$monitor(text,signals) — give it a string (or multiple strings) followed by a list

of variables.

e.g. $monitor(“mysigs: ”, “a=%b b=%b:”, a,b);

Examples:

$monitor($time,”a=%b”,a); // displays time value followed by a=xx (bin val)

// $time is actually a string value

 The always@ expression is used within a
Verilog module to group operations that
activate whenever the sensitivity list is
triggered

 Syntax:

always @ (<sensitivity1, sensitivity2, …>)

begin

<actions>

end
Example: Implementing a D-type flip-flop …

Used in behaviour descriptions and statemachines

module flipflop (din, clk, rst,q);
input din, clk, rst;
output q;
reg q; // q is a registered output
always @ (posedge clk) // whenever clk
begin

if (rst == 1) q = 0; // keep q low in reset
else q = din;

end
endmodule

 Busses or bit signal vectors are specified
as follows:

reg [20:0] dataA; // little endian LSB in bit 0

reg [0:20] dataB; // big endian MSB in bit 0

It doesn’t really matter if you are using them just as busses, it is only

relevant when applying operations such as add.

Question: Can you say dataA <= dataB without an error?

 Functions can be used as macros within the
body of a Verilog module.

These can effectively save typing.

They work differently to module instantiations.

These are defined inside a module.

Can only have input parameters

 Example:
function [31:0] negate;

input [31:0] a;
negate = ~a;

endfunction

reg [15:0] a;
wire [15:0] x;
assign b = negate (a);
initial begin

a=10;
a = add(1, a);
$display(" a=%b -a=%b”, a, b);

end

 If need be you can construct a function
to convert endianness, e.g.:

function [31:0] toBigEndian;
// transform data from little-endian to big-endian
input [31:0] x;
toBigEndian = {x[7:0], x[15:8], x[23:16], x[31:24]};

endfunction

module adder4 (a, b, cin, sum, cout);
input [3:0] a, b; // 2x 4 bit vector inputs
input cin; // carry input
output [3:0] sum; // 4-bit little endian vector
output cout; // carry out
// perform the adder operation
assign {cout,sum} = a + b + cin;

// the leftmost is MSB since it is little endian
endmodule

Syntax for concatenating wires: { x1, x2, … xn } the collective can

be used just the same as any other variable.

i.e. if the input is little endian so is the output

If you said {sum,cout}=A

Blocking
module blockFFs (

input D, input clk,

output reg Q1, output reg Q2)

always @ (posedge clk)

begin

Q1 = D;

Q2 = Q1;

end

endmodule

Non-blocking

module nonblockFFs (

input D, input clk,

output reg Q1, output reg Q2)

always @ (posedge clk)

begin

Q1 <= D;

Q2 <= Q1;

end

endmodule

On a clock, value of D feeds into Q1 and value of Q1 at

same point, before Q1 changes to D, feeds into Q2.

reg Q1 reg Q2

This diagram is fairly

accurate to what is

happening in the

blocking case. Reg2

is slightly delayed so

that the first

operation, Q1 = D;

completes first before

the Q2 = Q1 is done.

See simulation example of these cases at: https://www.edaplayground.com/x/9dxx

https://www.edaplayground.com/x/9dxx

Implementing a FSM
Creating finite state machines in Verilog

 A state machine has:
Input events

Output events

Set of states

A function that maps
(state,input) → (state,output)

A indication of the initial state

 A Finite State Machine (FSM) has a
limited number of states

 The state machine needs a register to
store its state

 It is sensitive to zero or more inputs,
which can change state and/or produce
an output

 States could be numbered in sequence
0 .. 2n-1 where n is the number of bits
for the state.

 Or a different encoding / ordering
scheme could be used to make state
changes more robust, e.g.:

use of grey scale or ‘one hot’
encoding (where ‘one hot’
means there is just one pin
in the state set at a time)

 Need a means to force initial state at
startup (i.e. reset state register)
Typically a reset handler does this.

 Specifying and changing states
Usually a case construct is used to define the

states, but could use ifs and elses

 Need to decide if the statemachine
 is synchronous (clocked) or
asynchronous (activates whenever an input

changes)

 May need recovery mechanism (e.g.
watchdog or recovery default state)

 There are three basic approaches to
state-machines:

Clock-triggered: Those that are trigged only
by the clock (a hot-running FMS)

Clock-disciplined: Those that are activated
only on a clock pulse

Input/event triggered: triggered by various
events possible including the clock

 Also called “polled” or “hot loop”

 May trigger on: posedge, megedge or
level of clock

 Generally respond to edge levels
of inputs checked each clock

 But beware:
 Danger if missing inputs that change

rapidly or do not say on the required
level for more than a clock pulse
(i.e. Nyquist sampling problem).

 May need ‘latch’ or ‘locking’ circuit to
grab inputs that may change rapidly.

Check inputs

Wait for

next clock

clock

input

input latch

Posedge triggered FSM responds

only here to the input blip

Pros and cons…
Benefit

• Easier to implement and (to

some extent) debug.

Drawback

• Might miss input transitions.

• May need latch. Possibly less efficient.

 Or clock-synchronized state machine

 This design is one that responds to
inputs but only after at clock pulses (or
on suitable levels of a clock pulse)

clock

input

Respond to input on positive edge

Respond to input on negative edge

Respond to positive input edge on clock high

Respond to negative input edge on clock low

Pros and cons…
Benefit

• Generally the ‘preferred’

professional approach

• Robust

• Easier to debug

Drawback

• More effort to code

• Not as responsive as a

purely event triggered

state machine (e.g. might

miss a input changing

rapidly between clocks)
Output
(responding to input after posedge on clock)

 This type of a state machine triggers on
particular inputs, possibly including clock
changes. You might see a Verilog
sensitivity list using ‘*’ to say trigger on
anything that is read in the code block,
i.e. whether a positive or negative edge.

input1

Respond to negedge on input2

Respond to posedge on input2

Respond to posedge on input1

Respond to negedge on input1

input2

Pros and cons…
Benefit

• likelihood of your code working, i.e

not neglecting something in the

sensitivity list

• Easier, less thinking work needed

Drawback

• is it can be wasteful

• Change of quickly re-entering the

statemachine if inputs change very

quickly but with a tiny delay

WAIT
ack=0

PING

ping

ACKN
ack=1

~ping

ping ack

clk

AliveFSM
Sends blip

out ack if

pinged

Notes: Must only send ack only after ping goes low

// Code your design here

module alivefms (input clk, input reset, input ping,

output reg ack,

output reg[1:0] state);

parameter [1:0] WAIT = 2'b11;

parameter [1:0] PING = 2'b01;

parameter [1:0] ACKN = 2'b10;

always @(posedge clk or posedge reset or

posedge ping or negedge ping)

begin

if (reset)

begin

state <= WAIT;

ack <= 0;

end else

begin

case(state)

WAIT: begin

if (ping) state <= PING;

else state <= WAIT;

ack <= 0;

end

PING: if (ping) state <= PING;

else state <= ACKN;

ACKN: begin

ack <= 1;

state <= WAIT;

end

default: state <= WAIT;

endcase

end

end

endmodule

…

 Start up

 Activation

 States

 Recovery

(i.e. activation is

clock and event-

triggered)

// testbench for alivefsm

module alivefms_tb ();

reg clk, reset, poke;

wire ack;

wire [1:0] state;

integer i;

// instantiate the FSM

alivefms alivefsm_tb (clk,reset,poke,ack,state);

initial // method for testing the FSM:

begin

// enable monitoring of wires of interest

$monitor("reset=%d state=%d poke=%d ack=%d\n",

reset,state,poke,ack);

clk = 0; reset = 1; #5 // do the reset

reset = 0; clk=0; #5

poke = 1; clk=1; #5 // poke the fsm

poke = 0; #5 // release poke

clk = 0; #5 // needs a clk transition

clk = 1; #5

if (ack == 1) // check if worked as planned

begin

$display("SUCCESS\n");

end

end

endmodule

Avail online at: https://www.edaplayground.com/x/25N5

https://www.edaplayground.com/x/25N5

$ iverilog '-Wall' design.sv testbench.sv && unbuffer vvp a.out

reset=1 state=3 poke=x ack=0

reset=0 state=3 poke=x ack=0

reset=0 state=1 poke=1 ack=0

reset=0 state=2 poke=0 ack=0

reset=0 state=3 poke=0 ack=1

SUCCESS

Done

But I am giving an impression of over-simplification… state machines can get

challenging. But they are considered by many (including me) as recommended,

indeed the appetizing defecto favorito, for elegant and understandable Verilog.

BUT WAIT… THERE’S MORE!!
Let me throw you a more tasty and
real problem to try….

A (hypothetical) cosmic ray detector system is able to detect particles passing

its sensors1. But there is also an occasional backscatter effect or false detection

(caused e.g. by reflected energy) which can also be detected. The aim is to

have a system that counts the valid particles detections and also tallies false

event (which may actually be true detections but is determine later in post-

processing)… technically the backscatter could be determined by the trajectory of particles if there are multiple

detectors panels, but we won’t get into those complications).

The diagram on right illustrates the situation.

cosmic particle

detector

potential backscatter or

detection from wrong direction

(e.g. from terrestrial source)

TODO:

Attempt a Verilog state machine for this problem

Implement a Verilog equivalent of the particle detector

code that will count the number of true particle

detections tp (when backscatter is low), as well as the

number of potential false detections fp (when

backscatter is high) for each slow clock (sclk) period.
See further details in the code on the next slide and module interface on slide 28.

Notes: You can make various simplifications or just attempt to implement a part of the

task. This exercise is provided to get you practicing your Verilog, as well as seeking the

awesome responsive power of Verilog and FPGA systems 😉

A C program was written to explain what this detector needs to do (see next slide…)

but even C is hopelessly too slow for this application; the code it is only provided to

explain what the system needs to do.

1 Note: technically it is not the cosmic particle itself that is detected but one of many particles from the

grammar-ray shower that result from a super high-energy cosmic particle colliding with e.g. an air

particle in the atmosphere. Info on this at https://en.wikipedia.org/wiki/Cosmic-ray_observatory

https://en.wikipedia.org/wiki/Cosmic-ray_observatory

//! FPGA Particle Detector Simulation ('golden' measure)

#include <stdio.h>

#include <stdlib.h>

int printlog = 1; //! Debug various, set to 1 to generate log report

unsigned sclk = 20; // slow clock (i.e. observation interval)

unsigned clk = 0; // fast clock

int detect_particle()

{ //! A dummy function to simulate input indicating particle is present

// detecting particles when sclk%4 and clk is %4

if (sclk%4==0) if (clk%4==0) return 1;

return 0;

}

int detect_backscatter()

{ //! A dummy function to simulate reading an input

// detecting backscatter particles when sclk==8 and clk is 5

if (sclk==8) if (clk==5) return 1;

return 0;

}

void out_tp(unsigned tp)

{

//! simulate outputting value of tp

}

void out_fp(unsigned fp)

{

//! simulate outputting value of fp

}

void out_fptime(unsigned time_fp)

{

//! simulate outputting value that fp backscatter triggered

}

…. cont→

int main()

{

unsigned count = 0; // timer counter

unsigned time_fp = 0;

unsigned countdown_fp = 0;

int backscatter = 0;

unsigned tp; // number true particles

unsigned fp; // number of false particles / backscatter

if (!printlog) printf("Particle detector simulation!\n");

if (printlog) printf("sck,clk,tp ,tp ,b,tfp\n"); // print headings out log output

while (sclk) // slow clock

{

out_tp(tp); out_fp(fp);

out_fptime(time_fp);

time_fp = 0;

tp = fp = 0;

clk=10; // fast clock

while (clk) {

count++;

if (countdown_fp) {

countdown_fp--;

if (countdown_fp==0) backscatter = 0;

}

if (detect_backscatter() && (countdown_fp==0)) {

time_fp = count;

countdown_fp = 10;

backscatter = 1;

}

if (detect_particle()) {

if (backscatter == 0) tp++; else fp++;

}

if (printlog)

printf("%03d,%03d,%03d,%03d,%01d,%03d\n",sclk,clk,tp,fp,backscatter,time_fp);

clk--;

}

sclk--;

}

return 0;

}

Cosmic

Detector

detect

backscatter

out_tp

out_fp

fp_time/

32

sclk

clk

reset

/

16

/

16

cosmic particle

detector

potential backscatter or

detection from wrong direction

(e.g. from terrestrial source)

Image sources:

man working on laptop – flickr

scroll, video reel, big question mark – Pixabay http://pixabay.com/ (public domain)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particularly want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

References: Verilog code adapted from

http://www.asic-world.com/examples/verilog

http://pixabay.com/
http://www.asic-world.com/examples/verilog

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Module declaration (recap)
	Slide 4: Initial block
	Slide 5: Monitor : a standard Verilog simulation operation
	Slide 6: The always@ (sensitivity_list)
	Slide 7: always@ Example : D-type Flip Flop
	Slide 8: Busses & endian
	Slide 9: Functions in Verilog
	Slide 10: Example function: Converting endianness
	Slide 11: Vectors & Signal concatenation { }
	Slide 12: Blocking/Non-blocking statemets
	Slide 13: Implementing a FSM
	Slide 14: Statemachines
	Slide 15: Implementing a FSM with Verilog
	Slide 16: The state register
	Slide 17: The states and state changes
	Slide 18: State-machine triggering
	Slide 19: Clock-triggered state machine
	Slide 20: Clock-disciplined state machine
	Slide 21: Event-triggered state machine
	Slide 22: Example Statemachine
	Slide 23: Create a testbench
	Slide 24: Run on iverilog (or other sim)
	Slide 25
	Slide 26: Take-home Activity
	Slide 27
	Slide 28
	Slide 29

