
Lecture 15

Coding in Verilog

Lecturer:

Simon Winberg

module myveriloglecture (wishes_in, techniques_out);

…

// implementation of today’s lecture

…

endmodule Learning Verilog with
Xilinx Vivado, Icarus Verilog
or Intel Altera Quartus II

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

The background details to FPGAs
were covered in Lecture 14. This
lecture launches into HDL coding.

http://creativecommons.org/licenses/by-sa/4.0/

 Basics of Verilog coding

 Exercise

 Verilog simulators

 Intro to Verilog in
ISE/Vivado

 Test bench

 Generating Verilog
from Schematic
Editors

 Module: the basic block that does something
and can be connected to (i.e. equivalent to
entity in VHDL)

 Modules are hierarchical. They can be
individual elements (e.g. comprise standard
gates) or can be a composition of other
modules.

module <module name> (<module terminal list>);

…

<module implementation>

…

endmodule

SYNTAX:

module1

module2

…

 Switch Level Abstraction (lowest level)
 Implementing using only switches and interconnects.

 Gate Level (slightly higher level)
 Implementing terms of gates like (i.e., AND, NOT, OR etc) and

using interconnects between gates.

 Dataflow Level
 Implementing in terms of dataflow between registers

 Behavioral Level (highest level)
 Implementing module in terms of algorithms, not worrying

about hardware issues (much). Close to C programming.

Arguably the best thing about Verilog!!

 Number format:

<size>’<base><number>

 Some examples:

3’b111 – a three bit number (i.e. 710)

8’ha1 – a hexadecimal (i.e. A116 = 16110)

24’d165 – a decimal number (i.e. 16510)

Defaults:

100 – 32-bit decimal by default if you don’t have a ‘

‘hab – 32-bit hexadecimal unsigned value

‘o77 – 32-bit hexadecimal unsigned value (778 = 6310)

Constant Hardware Condition

0 Low / Logic zero / False

1 High / Logic one / True

x Unknown

z Floating / High impedance

 Wires (or nets) are used to connect
elements (e.g. ports of modules)

 Wires have values continuously driven
onto them by outputs they connect to

a

b

c
d wire a;

wire a, b, c;

// Defining the wires

// for this circuit:

 Registers store data

 Registers retain their data until another
value is put into them (i.e. works like a
FF or latch)

 A register needs no continuous driver

reg myregister; // declare a new register (defaults to 1 bit)

myregister = 1'b1; // set the value to 1

// Define some wires:

wire a; // a bit wire

wire [7:0] abus; // an 8-bit bus

wire [15:0] bus1, bus2; // two 16-bit busses

// Define some registers

reg active; // a single bit register

reg [0:17] count; // a vector of 18 bits

 Integer 32-bit value

integer i; // e.g. used as a counter

 Real 32-bit floating point value

real r; // e.g. floating point value for calculation

 Time 64-bit value

time t; // e.g. used in simulation for delays

These datatypes are used both during the compilation and simulation

stages to do various things like checking loops, calculations.

 Parameter: the rather obscurely named ‘parameter’
works more like a constant in C (or generic in VHLD)
 Parameters can be used in implementation of both

synthesisable and simulation code

 Initial: used to initialize parameters or registers or
describe a process for initializing a module (i.e. like
constructor in C++)
 An initial block is effectively an always@ block that is

triggered on the start of simulation (NB: it is not
synthesisable)

 Initial can only be used in simulation code

 The tradition is to list input ports first and
then output ports. This makes reading of
code easier. i.e.:

ModuleName (<input ports> <output
ports>);

module mygate (

reset, // reset line if used

clk , // clock input

xout, // 1 bit output

ain); // a 1 bit input

// define inputs

input reset, clk, ain;

// define outputs

output xout;

… rest of implementation …

endmodule

mygate

clk

ain

xout

reset

 These are output port that hold their
value. An essential feature needed to
construct things like timers and flip flops

module mycounter (

clk, // Clock input of the design

count_out // 8 bit vector output of the

);

// Inputs:

input clk;

output [7:0] count_out; // 8-bit counter output

// All the outputs are registers

reg [7:0] count_out;

…

endmodule

 These two tasks usually done in one go…

 Modules are instantiated within modules

// Multiplexer implemented using gates only*

module mux2to1 (a,b,sel,y);

input a,b,sel;

output y;

wire sel,asel,bsel,invsel;

not U_inv (invsel,sel);

and U_anda (asel,a,invsel),

U_andb (bsel,b,sel);

or U_or (y,asel,bsel);

endmodule

* Based on source: http://www.asic-world.com/code/hdl_models/mux_2to1_gates.v

Syntax: <module name> <instance name> (<arguments>)

sel

a

b

y

U_inv

U_or

U_anda

U_andb

in
v
s
e

l

bsel

asel

Module

instance

names
Port mapping (like

arguments in a C

function call)

http://www.asic-world.com/code/hdl_models/mux_2to1_gates.v

 Why give instances names?

In Verilog 2001 you can do:
module mux2to1 (input a, input b, input sel, output y);

…

and (asel,a,invsel), // can have unnamed instance

…

endmodule

Major reason for putting a name in is when it comes to debugging: Xilinx

tends to assign instance names arbitrarily, like the and above might be

called XXYY01 and then you might get a error message saying

something like “cannot connect signals to XXYY01” and then you spend

ages trying to track down which gate is giving the problem.

Verilog Primitive Gates

and or not

nand nor xor

Buffer (i.e. 1-bit FIFO or splitter)

buf

Examples:

and a1 (OUT,IN1,IN2);

not n1 (OUT,IN);

Example:

buf onelinkbuf (OUT, IN);

buf twolinkbuf (OUT1, OUT2, IN);

BufIf (hardware if gate)

in out

ctr

bufif1 (out, in, ctr)

bufif1 operation

0 1 x z

0 z 0 L L

1 z 1 H H

x z x x x

z z x x x

ctr →
in

 →

Tri-state buffer. Can choose to drive out with value of in

(if ctr = 1) or don’t drive anything to out (i.e. if ctr = 0

connect high impedance to out)

See also notif (works in the apposite way: if ctr=0 then drive out with in)

 The preceding slides have given a brief
recap of Verilog, but covered much of the
major things used most commonly.

 It’s best to get stuck into experimenting
and testing code in order to learn this
language … which is a major reason for
the YODA project.

Some thoughts for experimenting to do soon…

 Consistent indentation

 Align code vertically on the = operator

 Use meaningful variable names

 Include comments (i.e. C-style // or /**/)

brief descriptions, reference to documents

Can also be used to assist in separating parts of
the code (e.g. indicate row of /*****/ to
separate different module implementations)

Source: Coram: Verilog-A Introduction for Compact Modelers (MOS-AK Montreux 2006)

Code Example1 : MUX
//---

// Design Name : mux_using_assign

// File Name : mux_using_assign.v

// Function : 2:1 Mux using Assign

// Coder : Deepak Kumar Tala

//---

module mux_using_assign(

din_0 , // Mux first input

din_1 , // Mux second input

sel , // Select input

mux_out // Mux output

);

//-----------Input Ports---------------

input din_0, din_1, sel ;

//-----------Output Ports---------------

output mux_out;

//------------Internal Variables--------

wire mux_out;

//-------------Code Start-----------------

assign mux_out = (sel) ? din_1 : din_0;

endmodule //End Of Module mux

Adapted from source: http://www.asic-world.com/code/hdl_models/mux_using_assign.v

Do get into a habit of

providing a preamble

for each file.

Do make use of

divider lines to

separate different

pieces of the codeDo try to provide

useful comments

especially if the

argument names are

not very obvious

For older versions of

Verilog (before 2001)

Try it on EDA Playground : https://www.edaplayground.com/ (run HDL code using online simulators)

http://www.asic-world.com/code/hdl_models/mux_using_assign.v
https://www.edaplayground.com/

 A testbench is essentially code that is written
to test your design, or exercise a module
you’re building

 Basically you set up a testbench to run a series
of test vectors or manipulate pins to see what
happens.

 The are usually written in the same language
as the module under test, but not necessarily…
I often use a combination of Verilog, Matlab
and/or C in my testbenches (Matlab or C to
generate test vectors and a Verilog testbench
module as the interface to this)

Testbench Example
EEE4120F

Verilog 4-bit counter with testbench

This is a brief version of testbench development that was given in EEEE3096S

Counter Design

Before you jump into coding, you should do some design…

Let’s think about what a 4-bit counter needs…

(1) A module

(2) interfaces: some inputs… reset and clock

reset

clk

(3) interfaces: an output… count value

count

(4) Maybe further embellishments … like enable line

enable

Counter

OK, that sounds like enough for now.. Let’s code it!

Code Example2 : Counter
//---

// Design Name : counter

// File Name : counter.v

// Function : 4 bit up counter

// Adapted from http://www.asic-world.com/examples/verilog/counters.html

//---

module counter (clk, reset, enable, count);

// Define port types and directions

input clk, reset, enable;

output [3:0] count;

reg [3:0] count;

always @ (posedge clk)

if (reset == 1'b1) begin

count <= 0;

end else if (enable == 1'b1) begin

count <= count + 1;

end

endmodule

Adapted from source: http://www.asic-world.com/examples/verilog/counters.html

Do get into a habit of

providing a preamble

for each file.

Here’s our port

interface, including

enable and reset

lines. Count is the

current count value

that will increase with

each clock.

i.e. the output port

count holds it value

Note: always name your .v file the same as the main module in that code file

(i.e. if counter is the entry point module then name the file counter.v)

http://www.asic-world.com/examples/verilog/counters.html

Let’s do it in iVerilog

• With iVerilog you basically need a good text editor

• Should install gnuplot too, there are ways to graph waveforms

Verilog compiles the .v code into an executable. To do so:

iverilog -ooutputfile inputfile.v

Generates an executable file called outputfile

So lets do: iverilog -ocount count.v

And amazingly we see a counter file generated…

Ooooh how fun! What exciting stuff will happen if we run it?!!!

Code Example2 : Counter
//---

// Design Name : counter

// File Name : counter.v

// Function : 4 bit up counter

// Adapted from http://www.asic-world.com/examples/verilog/counters.html

//---

module counter (clk, reset, enable, count);

// Define port types and directions

input clk, reset, enable;

output [3:0] count;

reg [3:0] count;

always @ (posedge clk)

if (reset == 1'b1) begin

count <= 0;

end else if (enable == 1'b1) begin

count <= count + 1;

end

endmodule

Adapted from source: http://www.asic-world.com/examples/verilog/counters.html

Do get into a habit of

providing a preamble

for each file.

Note: always name your .v file the same as the main module in that code file

(i.e. if counter is the entry point module then name the file counter.v)

http://www.asic-world.com/examples/verilog/counters.html

Counter Testbench Design

So again before you jump into coding, do some more design…

Let’s think about how to test a 4-bit counter…

reset

clk count

enable

Counter

OK, that sounds like a plan… let’s do it!

Basically you need:

1. $monitor the lines you want to see.

2. Do a reset high and toggle clock (because it is an active reset)

3. Then continue on setting reset low and enable high and

continuously toggle the clock

Code Example2 : Counter_tb1

// Counter Test bench version 1

// This just hooks up the test bench

module counter_tb; // this will become the TLM

reg clk, reset, enable; // define some regs, like global vars

wire [3:0] count; // just need a wire for count as it is stored

// within the counter module

counter U0 (// instantiate the counter (U0 = unit under test)

.clk (clk), // these are explicit port maps (usually one

.reset (reset), // doesn’t both to do this in Verilog).

.enable (enable),

.count (count)

);

endmodule

But this will of course still not do anything in the simulator…

we need to exercise some pins!

Monitor pins and change

some of their values

Note: you need to tell iverilog all the files to include, so use:

iverilog -o counter_tb2 counter_tb2.v counter.v

// Counter test bench 2

// Set up a monitor and change some pins

// Coder: S. Winberg

// 4-bit Upcounter testbench

module counter_tb;

reg clk, reset, enable;

wire [3:0] count;

counter U0 (

.clk (clk), .reset (reset), .enable (enable), .count (count)); // instantiate the module

initial

begin

// Set up a monitor routine to keep printing out the

// pins we are interested in...

// But first do a display so that you know what columns are used

$display("\t\ttime,\tclk,\treset,\tenable,\tcount");

$monitor("%d,\t%b,\t%b,\t%b,\t%d",$time, clk,reset,enable,count);

// Now excercise the pins!!!

clk = 0;

reset = 0;

enable = 0;

#5 clk = !clk; // The # says pause for x simulation steps

// The command just toggles the clock

reset = 1;

#5 clk = !clk; // Let's just tiggle it again for good measure

end

endmodule

Code Example2 : Counter_tb2

Main code that is

doing testing of the

counter module

$./counter_tb2

time, clk, reset, enable, count

0, 0, 0, 0, x

5, 1, 1, 0, 0

10, 0, 1, 0, 0

What we get out:

Monitor pins and change

some of their values

Note: you need to tell iverilog all the files to include, so use:

iverilog -o counter_tb3 counter_tb3.v counter.v

// Counter test bench 3

// Set up a monitor and change some pins

// Coder: S. Winberg

// 4-bit Upcounter testbench

module counter_tb;

reg clk, reset, enable;

wire [3:0] count;

counter U0 (

.clk (clk), .reset (reset), .enable (enable), .count (count)); // instantiate the module

initial

begin

// Set up a monitor routine to keep printing out the

// Now excercise the pins!!!

clk = 0; reset = 0; enable = 0;

#5 clk = !clk; // The # says pause for x simulation steps

reset = 1;

#5 clk = !clk; // Let's just toggle it again for good measure

reset = 0; // Lower the reset line

enable = 1; // now start counting!!

repeat (10) begin

#5 clk = !clk; // Let's just toggle it a few more times

end

end

endmodule

Code Example2 : Counter_tb3

But first…

What will count count up to with this code??

swinberg@forge:~/Verilog$./counter_tb3

time, clk, reset, enable, count

0, 0, 0, 0, x

5, 1, 1, 0, 0

10, 0, 0, 1, 0

15, 1, 0, 1, 1

20, 0, 0, 1, 1

25, 1, 0, 1, 2

30, 0, 0, 1, 2

35, 1, 0, 1, 3

40, 0, 0, 1, 3

45, 1, 0, 1, 4

50, 0, 0, 1, 4

55, 1, 0, 1, 5

60, 0, 0, 1, 5

What we get out:

It will count up to 5 because in each iteration of the repeat it does half a clock

Additional info: the follow slides are provided as optional additional guides

End of Term 1

Guidelines on using

Xilinx Vivado / ISE

The follow slides are provided as optional additional

guides, you can have a look over these to get a sense

of actions to be done in Prac3. However, I do suggest

going directly into Prac3 as it is planned around being

a tutorial to help you become familiar with Vivado and

its simulation functionality.

Learning Verilog By

Example
EEE4120F

 The best approach is starting small, and there are lots
of example Verilog programs on line that you can test,
have a look at sites such as:
 http://www.asic-world.com/examples/verilog/
 http://www.edaboard.com/

 Free for students Active-HDL (includes nice simulator,
takes less space than ISE)
 https://www.aldec.com/en/products/fpga_simulation/active

_hdl_student

 You can also generate Verilog from the schematic
editor, which can help in deciding the syntax to use…
short example of how to do this follows… (at least this can be
useful for quickly generating gate-based / architectural combinational logic designs)

http://www.asic-world.com/examples/verilog/
http://www.edaboard.com/
https://www.aldec.com/en/products/fpga_simulation/active_hdl_student
https://www.aldec.com/en/products/fpga_simulation/active_hdl_student

Counter Module in Vivado
EEE4120F

 If you are using Vivado to practice you can
do so with or without a FPGA platform
connected

 BUT you do still need to set up a desired
target platform in order to start a project (so
might as well specify a commonly used
training platform; this example uses a
Nexys3 but you could select pretty much any
option you have in your Vivado installation)

Implementing an 8-bit counter

Count8w

out
8

enable

clk

8

wrapped

Requirements:

INPUTS

• Want a counter that counts up for each

positive edge clock pulse on clk

• Input line enable that to enables (1) or

disables (0) the count operation

• An 8-bit start value that specifies the

starting value for the counter and is

loaded when enable is 0

start

OUTPUTS

• B-bit output out that provides

the current counter value.

• Wrapped changes from 0 to 1

each time the counter wraps

(i.e. goes from 255 to 0).

Reference Manual for FPGA Platform
If you use a board, then you need to get the right reference manual for it.

For example, if using a Nexys board (see Prac5a) you need to get the right pin assignments and

other configuration information from the reference manual. Digilent Inc. uses useful names for

these manuals e.g. “Nexys3_rm_V2.pdf” for the Nexys3 manual.

Choose Verilog in ISE/Vivado

Change to Verilog

(optional as you can

add in Verilog to a

project with preferred

language VHDL)

Starting with a new project… (can use an existing project also)

Example

using a

Nexys2
Can read off FPGA

device name here

Or pg1 of reference

manual should have

the device name

indicated

Should get something like this displayed…

Implementation

view of hierarchy

should confirm

which device you

are using

Add in a new file by right-

clicking On the project object in

the design hierarchy view

Select add a Verilog file

Add a Verilog file…

You can use the Define Module form if you want to specify the ports

without typing in manually, but you may prefer to skip this and define the

ports in the code (especially as this is something that may need to be

edited later)

`timescale 1ns / 1ps

///

/

// Company:

…

// Design Name:

// Module Name: Count8w

// Project Name:

…

//

///

/

module Count8w(

input [7:0] start,

input enable,

input clk,

output [7:0] out,

output wrapped

);

endmodule

Generates a

starting file

like this

Specifies

some

busses

These two

are just

single

bit / wire

ports

Simulation configuration setting:

timescale <reference_time>/ <precision>

Each 1ns step simulated with 1ps precision *

* Example of timescale use:
`timescale 1ns/1ps
means time scale is 1ns with resolution or least count of 1ps
#1 ; // 1ns delay
#0.001; // 0.001 ns this is the minimum delay at this time scale
#0.0001; // give 0 ns delay!! (not simulating to this fine a resolution)

// Additional Comments: counter with start input and wrap detection

module Count8w(

input [7:0] start,

input enable,

input clk,

output reg [7:0] out, // this one needs to be a register to keep its data

output reg wrapped // set to true if gone past start

);

reg org_start; // save the original start value

// start an always loop -- is activated for each clk positive edge

always @(posedge clk)

if (~enable) begin

out <= start; // the output is set to start if enable if low

org_start <= start;

wrapped <= 0;

end else begin

out <= out + 1;

if (out == start) begin

wrapped <= 1;

end

end

endmodule

Expand on the Verilog design…

This is an adaptation of a more standard counter, as can be found on http://www.asic-world.com/examples/verilog/simple_counter.html#8-

Bit_Simple_Up_Counter

http://www.asic-world.com/examples/verilog/simple_counter.html#8-Bit_Simple_Up_Counter
http://www.asic-world.com/examples/verilog/simple_counter.html#8-Bit_Simple_Up_Counter

 A Test Bench is a HDL program that
verifies the functional correctness of
the hardware design.

 The test bench program checks
whether the hardware model does
what it is supposed to do.

 Used with the simulator, tends to need
addition of simulator commands such
as using the delay (#n) operation

Adding this to the simulator…

Creating a Verilog Test Fixture

.. And put in a suitable name for the resultant file, usually

It is followed by _tb to show it is a test bench.

Provide it a useful

file name

Next window lets you

associate to a file, choose

Count8w, should finally show

summary of tile to add:

This is test bench file generated…

Creating a Verilog Test Fixture

.. And put in a suitable name for the resultant file, usually

It is followed by _tb to show it is a test bench.

This is the part you want

to edit to generate

simulation ‘stimulus’ (i.e.

toggling lines etc.)

Use #100 to simulate

waiting for 100 time units

(typically 100ns)

This creates an instance

of the module.

Example test bench

`timescale 1ns / 1ps // simulation precision

…

initial begin

// Initialize Inputs

start = 0;

enable = 0;

clk = 0;

// Wait 100 ns for global reset to finish

#100;

// Add stimulus here

start = 'd10;

enable = 'b0;

clk = 1;

#10; // delay 10ns

// Add stimulus here

enable = 'b1;

clk = 0;

#10; // delay 10ns

end

In the Altera simulator

the waveform editor

allows initial conditions

of lines to be set and

addition of clock lines,

but in test bench code

you need to implement

this behaviour

Click on Simulator and then double click simulate behavioural model

Double click

Testbench can be further refined to simulate behaviour of other inputs

and continue the clock for longer (e.g. using always or ‘forever begin’

simulation commands.

Further examples to try using simulators or on the actual hardware:

More http://www.asic-world.com/examples/verilog (these also provide

examples that can be run using iVerilog)

http://www.asic-world.com/examples/verilog

Generating Verilog from the Schematic Editor

Change to Verilog

(optional as you can

add in Verilog to a

project with preferred

language VHDL)

Starting with a new project… (can use an existing project also)

It can occasionally be useful to generate a Verilog code file from an existing schematic, e.g. if you

started with a schematic and then wanted to change to using the Verilog code directly.

Click to create a new source file

Can add a schematic

to start with…

Add a symbol…

Place somewhere

Add an IO marker or three

Put in some better names

Generating the Verilog…
You need to run synthesis to generate the Verilog code (only works if you

chose Verilog as preferred language)

Once done, look for the VF file with the same name as the schematic file.

Further discussion about Schematic to Verilog: http://www.edaboard.com/thread217131.html

and Schematic to VHDL: http://stackoverflow.com/questions/8968982/how-to-generate-vhdl-code-from-a-schematic-in-xilinx

Code is fairly human

readable although some

obscure, automatically

generated symbols names

are added (e.g. XLXI_2)

http://www.edaboard.com/thread217131.html
http://stackoverflow.com/questions/8968982/how-to-generate-vhdl-code-from-a-schematic-in-xilinx

Suggested assignment

This is a 4-bit adder design. Try to convert this into Verilog.

C

A

B Sum

Carry

Try to run on one or a few of the simulation tools presented in next slides…

Supplement

If you have QuartusII installed already you could of course also use it for

experimenting and generating Verilog…

You may find the QuartusII simulator easier to use, which could be a

reason to use this tool.

Learning Verilog in QuartusII
One approach is using a block diagram and converting to Verilog HDL.

E.g. using Altera Quartus II (See test1.zip for example Quartus project)

Learning Verilog
One approach is using a block diagram and converting to Verilog HDL.

E.g. using Altera Quartus II

See how param types are

specified

See how in QuartusII included

modules are instantiated and

ports explicitly mapped (Xilinx

chose not to do the explicit

port mapping when converting

from schematic to code)

Checking syntax

I find a handy

tool is the file

analyser tool in

Quartus II. This

can be used to

check the

syntax of the

file without

having to go

through the

whole build

process.

Testing (See test2.zip for example Quartus project that

contains only Verilog files and waveform file)

Load the Test2 file, if using Quartus

make sure that mynand is the top

level Entity

Running the simulation should

allow you to verify the design is

working as planned (i.e. NANDing)

 See Verilog tutorials online, e.g.:
 http://www.verilogtutorial.info/

 Icarus Verilog – An open-source Verilog
compiler and simulator
 http://iverilog.icarus.com/

Try iverilog on forge.ee

 Gplcver – Open-source Verilog interpreter
 http://sourceforge.net/projects/gplcver/

Try cver on forge.ee

 Verilator – An open-source Verilog optimizer
and simulator
 http://www.veripool.org/wiki/verilator

http://www.asic-world.com/verilog/tools.html

Comprehensive list of simulators:

http://www.verilogtutorial.info/
http://iverilog.icarus.com/
http://sourceforge.net/projects/gplcver/
http://www.veripool.org/wiki/verilator
http://www.asic-world.com/verilog/tools.html

Icarus Verilog
Probably the easiest free open-source tool available

Excellent for doing quick tests.

Takes very little space (a few megs) & runs pretty fast.

http://iverilog.icarus.com/

Installed on forge.ee

For Ubuntu or Debian you can install it (if you’re linked to the
leg server), using: apt-get install iverilog

Iverilog parsing the Verilog code and generates an executable the PC can run

(called a.out if you don’t use the flags to change the output executable file name)

I suggest the following to get to

know iverilog… upload mynand.v

example to forge.ee, compile it

with iverilog. Run it. Try changing

the testbest code, put in some

more operations

http://iverilog.icarus.com/

More Experimenting
Experiment with using both Altera Qauartus II, Icarus Verilog, and Xilinx ISE ISim

Try test3 or mycounter.v as a more involved program and test

Intro to Xilinx ISE using simulation

https://www.youtube.com/watch?v=pkJAWpkaiHg

Short video

Xilinx ISE Simulation Tutorial.mp4

https://www.youtube.com/watch?v=pkJAWpkaiHg

Intro to Xilinx Vivado

http://www.youtube.com/watch?v=H6W4HKbjnaQ

Short video

http://www.youtube.com/watch?v=H6W4HKbjnaQ

Image sources:

man working on laptop – flickr

scroll, video reel, big question mark – Pixabay http://pixabay.com/ (public domain)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particularly want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

References: Verilog code adapted from

http://www.asic-world.com/examples/verilog

http://pixabay.com/
http://www.asic-world.com/examples/verilog

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Module: Building block of Verilog Programs
	Slide 4: Module Abstraction Levels
	Slide 5: Syntactic issues: Constant Values in Verilog
	Slide 6: Syntactic issues: Constant Values in Verilog
	Slide 7: Wires
	Slide 8: Registers
	Slide 9: Vectors of wires and registers
	Slide 10: Non-synthesisable Data types
	Slide 11: Verilog Parameters & Initial block
	Slide 12: Ports
	Slide 13: Register Output Ports
	Slide 14: Instantiating modules and connecting up ports
	Slide 15: Instantiating modules
	Slide 16: Verilog Primitive Gates
	Slide 17: BufIf (hardware if gate)
	Slide 18: Where to go from here…
	Slide 19: Verilog Recommended Coding Styles
	Slide 20: Code Example1 : MUX
	Slide 21: Testbenches
	Slide 22: Testbench Example
	Slide 23: Counter Design
	Slide 24: Code Example2 : Counter
	Slide 25: Let’s do it in iVerilog
	Slide 26: Code Example2 : Counter
	Slide 27: Counter Testbench Design
	Slide 28: Code Example2 : Counter_tb1
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: End of Term 1
	Slide 35
	Slide 36: Learning Verilog By Example
	Slide 37: Learning Verilog
	Slide 38: Counter Module in Vivado
	Slide 39: Learning Verilog with Xilinx Vivado
	Slide 40: Implementing an 8-bit counter
	Slide 41: Reference Manual for FPGA Platform
	Slide 42: Choose Verilog in ISE/Vivado
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Test Bench
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Generating Verilog from the Schematic Editor
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Generating the Verilog…
	Slide 60: Suggested assignment
	Slide 61: Supplement
	Slide 62: Learning Verilog in QuartusII
	Slide 63: Learning Verilog
	Slide 64: Checking syntax
	Slide 65: Testing
	Slide 66: Suggested study ideas…
	Slide 67: Icarus Verilog
	Slide 68: More Experimenting
	Slide 69: Intro to Xilinx ISE using simulation
	Slide 70: Intro to Xilinx Vivado
	Slide 71

