
Lecture 14
Programmable Logics & FPGAs (recap)

FPGA Interns

Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

http://creativecommons.org/licenses/by-sa/4.0/

 Recommended Reading on Verilog HDL

 Programmable Logic Devices

 What is so special about FPGAs

 FPGA interns

 Xilinx Slices

 ES2* provided an introduction to HDL and the
Verilog HDL, and getting started in Xilinx Vivado
and/or the open-source Icarus Verilog Simulator

 If you are not already familiar with Verilog or
VHDL, you are encouraged to read Deepak Tala’s
(founder of ASIC-World) ”Verilog Tutorial and
Introduction to ASIC-World”

 I recommend ASIC-World.com as a first, go-to
place for:
 Solutions to Common HDL Problems,

 Additional Tutorials, and

 Examples of Useful Modules often needed in designs.

* Embedded System II EEE3096S 3rd year course

https://www.xilinx.com/support/download.html
http://iverilog.icarus.com/
http://classweb.ece.umd.edu/enee359a/verilog_tutorial.pdf
http://classweb.ece.umd.edu/enee359a/verilog_tutorial.pdf
https://www.asic-world.com/
https://www.asic-world.com/verilog/questions.html
https://www.asic-world.com/verilog/veritut.html
https://www.asic-world.com/examples/verilog/index.html

EEE4120F

CPLDPLD + SoCPLA FPGA

 In comparison to hard-wired chips, a
programmable chip can be reconfigured
according to application or user needs

 Provides a means to use the same chip(s) for
a variety of different applications.

 Makes programmable chips attractive for use
in many products, e.g. prototyping products.

 Further benefits are:
 Low starting cost (e.g. Web pack+ FPGA dev kit)
Risk reduction
Quick turnaround time

The term PLD refers to “Programmable Logic Device” which could technically be any of the

programmable devices (i.e. PLA / CPLD / FPGA), in early work it often referred to a PLA but this is no

longer a correct assumption.

 Application Specific Integrated Circuit (or
ASICs) have a longer design cycle and
higher engineering cost than using
programmable chips.

 Still a need for ASIC: faster performance
and lower cost for high volume

 Generally, programmable chips are suited
to low to medium product production.
(e.g. product runs needing under 10,000
chips)

 Programmable logic chips variety in terms
simple→complex cheap→expensive

 PLA = Programmable Logic Array

 Simple: just AND and OR gates; but Cheap

 CPLA = Complex PLA

 Midrange: compose interconnected PLAs

 FPGA = Field Programmable Gate Array

 Complex: programmable logic blocks and
programmable interconnects; but Expensive

FPGA orders of

magnitude larger

than CPLD

TIBPAL22V10-7C from Texas Instruments

is a commonly used

The Altera MAXII and arguably the

Altera FLEX as well

Xilinx Spartan and Virtex range;

Altera Cyclone and

The Xilinx, Altera FPGA are probably

the most commonly known

manufacturers, others include: Lattice,

Microsemi / Actel, Achronix

FPGA
A sea of possibilities…

01001010101000100101001010010100
10010010010100100101101001
100100110101011010011101

 The huge number of logic elements (LEs) within
these chips, and their many PIO pins, makes it
possible to implement large & complex digital
systems in them.

 The ease and speed of programming them
provides the ability to rapidly change the
hardware (within ms timing) to adapt to
application needs.

 Greater potential for testing and tweaking
designs before fabricating them as ICs

Things can get rather… muddy!

• Only does the digital part – still

need analogue components,

user interface, and circuitry that

interacts with the outside world.

• Has a limited number of IO

pins that can connect up with external signals.

•Susceptible to EM disturbances, PCB and

other components needs to be suitably

placed to avoid interfering with functioning

of FPGA.
• Typically a slower

clock than most fast

CPUs nowadays (e.g.

100MHz clock speed).

• Typically has lots of

pins that need to be

soldered on, needing

small track width and

multilayer PCBs

• Often can’t

achieve full

utilization of PLBs

• Place & route can

take a long time to

complete

• Limitations of

internal

interconnects

• A specialized form of

development,

combines the

challenges of both s/w

and h/w

Eeek!

 A completely different architecture for
PLAs was introduced in the mid-1980’s
that uses RAM-based lookup tables
instead of AND-OR gates to implement
combinational logic

 These devices are called field
programmable gate arrays (FPGAs).

 The device consists of an array of
configurable logic blocks (CLBs)
surrounded by an array of I/O blocks

 FPGAs really don’t have AND and OR
gates, (they have a few) but rather just
RAM look-up tables.

EEE4120F

Somewhat of a recap of ES2, but

scan through these slides to ensure

you are well versed in these issues.

Programmable

interconnect

Programmable

logic blocks

Image adapted from Maxfield (2004)

Programmable logic

element (PLE)

(or FPLE*)

* FPLE = Field Programmable Logic Element

Note: one programmable logic block (PLB) may contain a complex arrangement of

programmable logic elements (PLE). In this example, it suggests the PLEs are LUTs (look-up tables), and there is

just one LUT per PLB; but rather assume here there are actually multiple LUTs, let’s say 9 of them, per PLB.

The size of a FPGA or programmable logic device (PLD) is measured in the number of

LEs (i.e., Logic Elements) that it has.

Terminology note:

One often simplifies PLE to LE (i.e.

logic element), and PLB to LB (or

logic block). So this example has 6x

LBs (assuming each block here is a

LB not an LE).

The FPGA array structure (found in more modern FPGAs) comprises:

• Slices (which comprise one or more PLBs, kind of like a sub-FPGA), composed of:

• LUTs to implement combinatorial logic, but may have other ‘PLEs’

• Flip-Flops (FF) to implement sequential logic (e.g. x=1; delay; y=1;)

• Routing Network (or ‘routing net’) to interconnects logic resources / PLBs

• I/O logic to communicate with the outside world (rest of the PCB)

• Clock Management:

• Phase Locked Loops (PLLs)

• Digital Clock Managers (DCMs)

• Hard-Macros: (specialized resources)

• SRAMs blocks

• Digital Signal Processing

(DSP) cells (e.g. multiplier)

• PCIe interface

• Gigabit Transceivers

• etc.

FPGAs may have one or more type of

‘slice’. A basic slice comprises Look-Up

Tables (LUTs) and flip flops

 You already know all your logic primitives…
The primitive logic gates

AND, OR, NOR, NOT, NOR, NAND, XOR

AND3, OR4, etc (for multiple inputs).

Pins / sources / terminators

Ground, VCC

Input, output

Storage elements

JK Flip Flops

Latches

Others items: delay, mux

OR

Input Pin

Output Pin

Altera Quartus II representations

Disclaimer: In reality, nowadays, FPGAs often don’t comprise

individually routable LEs. LUTs are a more versatile approach.

Often including a number of pre-build ‘hard macros’ (e.g.

adders or multipliers) in PB that are commonly used in

combinational logic designs. So, we are effectively

considering LEs as primitive gates for education purposes.

 A simple but powerful approach to FPGA
design is to use lookup tables for the
PLBs. These are usually implemented as a
combination of a multiplexer and memory
(even just using NOR gates)

 Essentially, this approach is building
complex circuits using truth tables (where
each LUT enumerates a truth table)

The usual strategy for implementing PLBs

examples follows…

Note: Most FPGAs are not really just a combination of LUTs connected with multiplexers (switching

fabric). While an FPGA may well have lots of LUTs for general logic, they usually also have hardened

operations / ‘hard-macros’ (usually DSP blocks) that implement efficient adders, comparators etc…

see Mainstream PLBs a little later.

0

1

1

0

1

0

0

1

8-bit static memory 3

3-bit input bus

1-bit output

000

001

010

011

100

101

110

111

Any guesses as to

what logic circuit this

LUT implements?

input values

input lines

It’s an XOR of the 3 input

lines!!!

output 0

1

1

0

1

0

0

1

000

001

010

011

100

101

110

111

in out

k-input

LUT
DFF

clock

…
k inputs output

config_sync

Configure

synchronous or

asynchronous

response (i.e. a line

from another big

LUT).

0

1

Image adapted from Maxfield (2004)

Another example for implementing an alternate logic function.

* Used by manufacturers like Xilinx

• Assume a k-input LUT for each logic block (LB)

• Assume N x LBs per logic cluster

• BLEs in each logic clusters are fully connected or mostly

connected

Diagram adapted from Sherief Reda (2007), EN2911X Lecture 2 Fall07, Brown University

The diagram shows the

same input lines (I) are

sent to each LB, in

addition to each of the

N LBs’ output lines.

Each LB operates on 4

input lines at a time,

and a MUX is used to

decide which input to

sample. The MUXs may

be configured from a

separate LUT, or could

be controlled by the LB

it is connected to.

LB

LB

…
N x LBs

“Every slice contains four logic-function generators (or LUTs), eight storage elements, wide-

function multiplexers, and carry logic. These elements are used by all slices to provide logic,

arithmetic, and ROM functions. In addition to this, some slices support

two additional functions: storing data using distributed RAM and shifting data with 32-bit

registers. Slices that support these additional functions are called SLICEM; others are called

SLICEL. SLICEM represents a superset of elements and connections found in all slices. Each

CLB can contain zero or one SLICEM. Every other CLB column contains a SLICEMs.

In addition, the two CLB columns to the left of the DSP48E columns both contain a SLICEL

and a SLICEM.” Source: http://www.xilinx.com/support/documentation/user_guides/ug364.pdf pg 8

http://www.xilinx.com/support/documentation/user_guides/ug364.pdf

EEE4120F

(A more accurate view on

FPGA internal structures)

The Xilinx Spartan6 is a fairly good representative of how the logic in a FPGA is structured

and connected. The Xilinx FPGAs are based around slides, where a slice (a substantive

portion of the FPGA) is structured to support particular design characteristics. For example

SliceX provides maximum flexibility for arbitrary logic but not designed around carry logic;

whereas the SlideL supports carry logic and bigger muxes (to allow a LB to tap into more

wires) but these features might be redundant for less complex designs.

Note: Xilinx

tends to use

‘CLB’ for ‘PLB’,

basically

means the

same thing

(textbooks

often use the

term PLB).

SLICEX slices are generally

the most basic of slices, but

also the most flexible. The LEs

essentially contain LUTs and

flip flops (e.g. to store

registers and to configure

clocked or un-clocked LE

operation)

Source: https://www.xilinx.com/support/documentation/user_guides/ug384.pdf

https://www.xilinx.com/support/documentation/user_guides/ug384.pdf

SLICEL slices contain the

standard set of LEs for the

particular FPGA concerned.

As the diagram shows, it looks

a little more complicated than

the SLICEX but it is less

complicated than the design of

a SLICEM (see next slide).

Source: http://www.xilinx.com/support/documentation/user_guides/ug364.pdf pg 10

SLICEM slices support

additional functions; they are a

superset of SLICELs; i.e. the

have all the standard LEs plus

some additions.

Source: http://www.xilinx.com/support/documentation/user_guides/ug364.pdf pg 9

Onwards to Xilinx Vivado and [recapping] Verilog programming …

Image sources:

PLD illustration on title slide - Wikipedia Open Commons

FPGA chip illustrations - Wikipedia Open Commons

Stuck in Mud – fickr (CC2 for free reuse and modification)

Typing ninja – Pixabay http://pixabay.com/ (public domain)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/

	Slide 1
	Slide 2: Outline for today
	Slide 3: Recommended Reading
	Slide 4: Programmable Logic Devices
	Slide 5: Programmable Chips
	Slide 6: ASICs vs. Programmable Chips
	Slide 7: PLAs, CPLDs and FPGAs
	Slide 8: Some examples of PLDs
	Slide 9: So what? What is so special about FPGAs?
	Slide 10: So what? What is so special about FPGAs?
	Slide 11: FPGAs – “A sea of possibilities”
	Slide 12: Any Drawbacks?
	Slide 13: Structure of FPGA
	Slide 14: FPGA Interns (recap)
	Slide 15: FPGA internal structure (simplified)
	Slide 16: FPGA internal structure (more accurate)
	Slide 17: Logic Elements (LEs) – Remember your logic primitives
	Slide 18: Look Up Tables (LUTs)
	Slide 19: Simple 3-LUT implementation for a PLB
	Slide 20: Simple 3-LUT implementation for a PLB
	Slide 21: Mainstream* Programmable Logic Block (PLB)
	Slide 22: Logic block clusters (LBCs) and Configurable logic blocks (CLBs)
	Slide 23: Xilinx L and M Slices Approach for configurable logic blocks (CLBs)
	Slide 24: Xilinx Slices
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

