
Presented by

Simon Winberg
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

(This provides a fairly high-level

discussion of these issues which are

explored in more depth next term)

http://creativecommons.org/licenses/by-sa/4.0/

 Distributed memory infrastructure

 Shared memory infrastructure

 Hybrid memory infrastructure

 Warming up for MMU, DMA and memory
considerations to get into next term

(this version does not include Verilog

scenarios, those moved to later lecture)

 We discussed communication for shared
memory in Lecture 11… and that such
communication is likely invisible.

 Message passing, often used in distributed
memory, is often more visible communication.

 But what are the hardware approaches to
implement shared and distributed memory?

 The aim of this lecture is to touch on those
aspects briefly so that you have an
understanding of how it can be done.

Distributed memory

infrastructure
EEE4120F

 The distributed model of memory is based
around interconnected processing nodes,
each having have their own memory. It
involves: interconnects, the processors, and
the processors’ memory, as illustrated:

These processing nodes

only have direct access to

memory that they control.

Interconnect

P1 P2 Pn

M1 M2 Mn

…

…

 Main advantages of distributed memory:
 Memory is scalable, although limited by number of

connected processors (i.e. can add processors with
memory to the network to get more memory)

 Can build very large systems, possibly many
1000s of processing nodes!

 Each processor has rapid access to its own
memory without interference or cache
coherency problems cause by other processors

 Cost effective. Easier to build (just use off-the-
shelf / easily purchased parts)

 To read or write information from/to another processor’s
memory a message must be sent over the network to
processor concerned.

 Need to keep track somehow of where the memory is,
i.e. who has it. (although things like memory brokers can
be used instead to offload this task)

 Programmer is responsible for many of the details of the
memory access and possibly communication – more
places that mistakes can creep in

 May be difficult to distribute a complex data structure,
and parallelize how maintenance and synchronization of
such a data structure is done (e.g., think of possibly many
processor working collaborating on an image, there may
be stages where multiple processors are contending for
access simultaneously).

 You might already know about the most
popular one:
Message Passing Interface (MPI)

 Others:
Parallel Virtual Machine (PVM):

https://en.wikipedia.org/wiki/Parallel_Virtual_Machine

 LibDSM: (quite different to MPI):
https://github.com/Micrified/libdsm

OpenSHMEM (some similarities to MPI, at least
OpenMPI and can translate between easily):
http://openshmem.org/site/About

https://en.wikipedia.org/wiki/Parallel_Virtual_Machine
https://github.com/Micrified/libdsm
http://openshmem.org/site/About

 Basically indicate if an external network,
e.g. needing switches, are involved…

 NORMA = NO Remote Memory Access
Nodes connected via network adaptors to

external switches

 RMA = Remote Memory Access
Processing nodes connected via internal

special interconnect hardware (e.g. SMP)

Often allows one-sided memory transfers
(i.e. a get, or a put at a time)

Shared memory infrastructure
EEE4120F

 To be more precise, this is more
accurately described as “shared
memory address space accessible by all
processors”

The physical memory hardware

modules storing the data may

still be distributed somehow, but

the different processing nodes

use the same address to

access a particular data item.

Interconnect

P1 P2 Pn

Shared Memory

…

…

 The processors may have their own
local memory (e.g. caches) to hold
copies of some global memory to boost
performance.

 Maintaining the consistency of such
copies (caches) is usually done by
specialized hardware

 You already know about the most
popular ones:

pThreads (in Linux)

OpenMP

(not necessarily MPI… although it might end
up using shared memory, possibility not
knowing it is shared memory, or the library
might be design to leverage shared memory
for nodes that can access it)

 Global address space is more user-friendly for the
programmer.

 Allows potential to use data structures, possibly even
reusing the code without needing changes, and for the
programmer to do so efficiently and with little modification

 Overall, Typically easier to program, less worry about explicit
messaging between processors; provides:
 Implicit communication in response to use of shared data (i.e.

happens behind-the scenes, out of sight of programmer)
 May, highly likely, will still need explicit synchronization and/or

use of semaphores (i.e. to avoid multiple processors writing to
the same location at once)

 Data sharing (communication) between tasks is very fast
(not needing to be packed into messages send between
processors)

 (Many of these points are mentioned in the OpenMP lecture)

 Needs specialized and likely expensive
hardware for efficient (and scalable)
memory access and cache coherence

 Tends not to be so scalable, may be
limited to what is provided by the
computer system (e.g. limited to say 10s
to 100s of nodes; although in the case of
GPUs many 100s available … but GPU
kernels are usually much smaller and more
focused than full application programs)

 UMA (Uniform Memory Access)
 Equal access times to memory from each

processor (most SMP provide this)

 Almost always cache-coherent

 Interconnects tends to be either*:

Bus: easier, and cheaper, but less scalable
access time. (i.e. multiple processors share
common memory bus to access global memory).

Crossbar: more difficult to implement, and more
expensive (e.g. on FPGA takes more logic,
essentially an exponential growth problem) but
the very scalable speed.

* This is one of the important trade-off decision in designing these systems… A bus is highly scalable for adding systems, but not scalable

in speed: more systems means more traffic and likelihood of slower transfers. Whereas the crossbar is the option: a specific crossbar

design is fixed to connect only the chosen number of nodes, but provide good speed between any of the nodes wanting to connect.

 NUMA (Non-Uniform Memory Access)

Usually this is just a linking of multiple UMA nodes
with a switching network (much like the Hybrid
model which is next)

Nodes that share UMA can share memory more
efficiently… but there may still be issues of
synchronizing with all the other nodes /
maintaining chace coherence on other machines

The cc-NUMA: a NUMA system enhanced to
maintain fast cache coherence with other nodes.

* This is one of the important trade-off decision in designing these systems… A bus is highly scalable for adding systems, but not scalable

in speed: more systems means more traffic and likelihood of slower transfers. Whereas the crossbar is the option: a specific crossbar

design is fixed to connect only the chosen number of nodes, but provide good speed between any of the nodes wanting to connect.

 Hybrid Memory is the logical extension
of combining the best aspects of the
distributed and shared memory
architectures

 This brings us back to the ideal
coupling of the MPI and the OpenMP
households… essentially uses:
Message passing between nodes +

Multi-threading within nodes

Other (commercial) examples of using Hybrid memory:

IBM BlueGene/P; Cray XT4

Two typical forms of hybrid memory…

 Clusters of shared memory nodes, where:
 Number of nodes >> number processors within node

 Often use small, cheap SMP nodes (rack-mounted)

 (These are sometimes called clumps within a cluster)

 Commonly uses a standard network (e.g., Gigabit
Ethernet)

 Constellation systems
 Number of processors inside node > number of nodes

 Comprises larger, more costly UMA or cc-NUMA nodes

 Commonly uses special high-speed interconnects

 This lecture has intentionally not gone into
issues of datapaths connecting with memory,
FPGA memory solutions, or Digital Accelerators
and memory … it is just a mild warm-up to get
you thinking about these memory models and
ways to share memory between collaborating
processors (not necessary just CPUs)

 Topics that will be covered next term include:
 Memory Management Units (essential component

of implementing an effective memory architecture
for a computer or digital accelerator)

 Direct Memory Access (DMA) and their flavors
 Other considerations for memory

 This lecture concludes high-level design
concepts for parallel systems

 You might now be wondering what is
next in this course…
let’s get directly into that!

 The YODA mission begins!

 FPGAs, Verilog and Vivado

 Nexys4

 Thoughts of using iVerilog and where
and how that can replace using Vivado

Image sources:

Pixabay

commons.wikimedia.org

Images from flickr

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://commons.wikimedia.org/wiki/File:Lei_de_moore_2006.png

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Distributed vs. Shared Memory
	Slide 4: Distributed memory infrastructure
	Slide 5: Distributed Memory – the model
	Slide 6: Distributed Memory – advantages
	Slide 7: Distributed Memory – disadvantages
	Slide 8: Distributed Memory – Programming Models
	Slide 9: Distributed Memory – is it No Remote or Remote?
	Slide 10: Shared memory infrastructure
	Slide 11: Shared Memory – the model
	Slide 12: Shared Memory – complications for cache and local memory
	Slide 13: Shared Memory – Programming Models
	Slide 14: Shared Memory – Advantages
	Slide 15: Shared Memory – Disadvantages
	Slide 16: Shared Memory – Access Time Classifications
	Slide 17: Shared Memory – Access Time Classifications
	Slide 18: Hybrid Memory
	Slide 19: Hybrid Memory
	Slide 20: MMU, DMA and other specialized memory hardware facilities …
	Slide 21: Concluding high-level system design considerations
	Slide 22
	Slide 23: Next week plans …
	Slide 24

