
Presented by

Simon Winberg
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

http://creativecommons.org/licenses/by-sa/4.0/

Steps in Designing Parallel Programs

Hardcore

competent

HPES

programmers
(leading the

way to greater

feats)

Sequential programmers in

their comfort zone.

…

The hardware may be done first… or later.

The main steps:

1. Understand the problem

2. Partitioning (separation into main tasks)

3. Granularity

4. Communications

5. Identify data dependencies

6. Synchronization

7. Load balancing

8. Performance analysis and tuning

see

lecture 10

P
A

R
T

 3
/3

 Step 4: communication
Factors related to Communication

Cost of communications

 Latency vs. Bandwidth

Baud rate vs. Bandwidth

Effective bandwidth

Visibility of Communications

Synchronous vs.
asynchronous

Scope of comms

Collective communications

Efficiency of communications

Brief mention of systems

thinking …
EEE4120F

Reasoning for why this is mentioned:
Systems thinking gives a useful perspective and thinking approach for thinking about the

interconnectedness of complex computer systems, not just how their constituent pieces

communicate with one another, but also how the system being built is part of a larger

system, workplace, environment or ecology. Thus it encourages not just a focus on the

system being designed but the awareness of relevant scientific knowledge and potential

impact or dependence that the system has on related or broader systems it fits within.

(These slides should were suppose to have been discussed prior to the GA assignment).

General Systems

Thinking (GST)
Critical Analysis
(& Critical Thinking)

• How does the problem of focus

relate to more general problems?

• What other systems are being

depended on or are affected?

• Has a systems approach been

considered in addition to the usual

divide and simplify approach?

• Let’s consider what happens, in a

logical scientific / deductive manner, if

we discard or replace some of the

traditions or ‘conditioned choices’.

• Reflecting on choices and

descriptions

• Considering ‘what if…’

scenarios (e.g. what if a

chair had only one leg

instead of four)

Applying rational and logical
thinking while deconstructing texts
or subject matter studied.*

* Adapted from: Browne, M & Keeley, S 2001, Asking the right questions: a guide to critical thinking, 6th edn, Prentice-Hall, Upper Saddle River, N.J.

See last page for suggested sites to learn more about critical analysis

YouTube clip: Systems thinking introduction

This is a suggested video clip to view for gaining an

insight into what Systems Thinking is about.

https://youtu.be/Fo3ndxVOZEo

https://youtu.be/Fo3ndxVOZEo

Step 4: Communication
EEE4120F

Like Bobby Womack says …

* Media clip source: Quality sounds of ‘Communication’ by Bobby Womack https://youtu.be/jk-gP8oBihA

https://youtu.be/jk-gP8oBihA

Lets try to…

Get the

Communications Right

to get our

Systems Right

(PS: that’s not necessarily a blast from the past!! You might still be making those noises but higher frequency ☺)

 The communications needs between
tasks depends on your solution:

 Communications not needed for
Minimal or no shared data or results

E.g., an image processing routine where
each pixel is dimmed (e.g., 50% dim).
Here, the image can easily be separated
between many tasks that act entirely
independently of one other.

Usually the case for embarrassingly parallel
solutions4

 The communications needs
between tasks depends on
your solution:

 Communications is needed for…
 Parallel applications that need to share results or

boundary information. E.g.,

E.g., modeling 2D heat diffusion over time – this
could divide into multiple parts, but boundary
results need to be shared. Changes to an elements
in the middle of the partition only has an effect on
the boundary after some time.

 Cost of communications

 Latency vs. Bandwidth

 Visibility of communications

 Synchronous vs. asynchronous
communications

 Scope of communications

 Efficiency of communications

 Overhead and Complexity

 Communication between tasks has some
kind of overheads, such as:

CPU cycles, memory and other resources that
could be used for computation are instead
used to package and transmit data.

Also needs synchronization between tasks,
which may result in tasks spending time
waiting instead of working.

Competing communication traffic could also
saturate the network bandwidth, causing
performance loss.

 Communication Latency =

 Time it takes to send a minimal length (e.g., 0 byte)
message from one task to another. Usually expressed
as microseconds.

 Bandwidth =

 The amount of data that can be sent per unit of
time. Usually expressed as bits per second (bps) or
megabits/sec, and
sometimes for
convenience as
megabytes/sec or
gigabytes/sec.

 Many small messages can result in latency
dominating communication overheads.

 If many small messages are needed:

 It can be more efficient to package small messages
into a larger ones, to increasing the effective
bandwidth* of communications.

* Explained soon!

 Avoid misuse of these terms by using
them interchangeably

The general public seem to think these
refer to the same thing, and in some cases,
from a user perspective, this may be OK.

I say, Beatrice, how

is the baud rate on

your end?

A B

My dear Alice, it

is much the same as your

end. About 200 Southern

twangs per minute.

Nevertheless an engineer should know that:

baud specifies the symbol rate (or signal

changes) per unit of time, and this could

be an entirely analogue measure.

Bandwidth is different depending whether

you are considering computer networks/telecoms

or signals more generally (e.g. in a RF system). For

computing Bandwidth is a measure of data rate in bits

per second. But more generally in the electrical

engineering Bandwidth refers to the frequency range

within a particular band (typically a band that is used for

transmitting some sort of signal).

 Baudrate is not always interpreted the
same way for all applications when it
comes to deciding the amount of bytes
that the link provides.

 This is due to other aspects of the
protocol used, e.g. if each byte is
surrounded by error detection bits.

Further reading: http://en.wikipedia.org/wiki/Baud

http://en.wikipedia.org/wiki/Baud

 Remember:
 A byte is always understood as 8 bits – but the byte

is just the ‘useful data’ that is being transferred.

 If the connection is specified as a speed in bits
per second, then it is 8 bits per byte.
 When you specify the speed in baud rate, you're

specifying symbol rate (see previous slide) in which
case you might be using 10 symbols to a byte when
using start-data-stop or 8b/10b encoding schemes.

 So, in other words you may quite likely find yourself
in a situation where you have a bandwidth of say
1Mbps but a baud rate of 1.25 mega symbols per
second.

Further reading: http://en.wikipedia.org/wiki/Baud

http://en.wikipedia.org/wiki/Baud

MBps

 There is even an official SI unit for “baud”
 It is written as "Bd" units for specifying symbol rate
 This should not be confused with the more

commonly known bps (bits per second) or Bps
(bytes per second).

 So you should now know:
x MBd is not always = x Mbps

 Example:
 If you have an 8b/10b encoded line that has a

bandwidth of 10 MBd, you can automatically say
that it has a bandwidth of 8 Mb/s, or 1 MB/s
(excluding other overhead such as packet headers,
of course).

Further reading: http://en.wikipedia.org/wiki/Baud
Mbps

http://en.wikipedia.org/wiki/Baud

If you’re one of those super keen students, you might like to look at these

nuggets of knowledge and web pages for further reading on this topic:

• PCIe 1.0 and 2.0 (including Ethernet and USB) uses 8b/10b encoding. PCIe

3.0 and 4.0 uses 128b/130b encoding. Read more at:

http://en.wikipedia.org/wiki/PCI_Express#History_and_revisions

• Historically, Hamming code refers to the Hamming (7, 4) code, which uses 7

symbols for every 4 data bits. There are many other variations on this which

you can explore at http://en.wikipedia.org/wiki/Hamming_code

• DVD encoding uses Reed-Solomon error correction in two stages (note, in

case you were wondering, this encoding has nothing to do with grass or

mines) read more at http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Data_storage.

• There are even more interesting cases where run-length limited codes are

used with error correction and (for argument sake) 16 QAM signal encoding.

1 MBd 16 QAM has a bandwidth of 4 Mb/s (rather interesting case because

the baud rate here is a quarter of the bit-rate! You also get 32, 64, 128 and

256 QAM systems....)

Acknowledgement: thanks to John-Philip Taylor for these interesting reading suggestions.

(these readings are not examined)

Supplementary

reading

http://en.wikipedia.org/wiki/PCI_Express
http://en.wikipedia.org/wiki/Hamming_code
http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction

Total latency = Sending overhead + Transmission time +

time of flight + Receiver overhead

Effective bandwidth = Message size / total latency

Sending overhead Transmission time

Time of flight

Transport latency

Receive overhead

Total latency

Transmission time

time of flight is also referred to as ‘propagation delay’ – it may depend on how many

channels are used. E.g. a two-channel path will give an effective lower propagation.

With switching circuitry, the propagation delay can increase significantly.

Example:

You are wanting to connect two computers together using a copper wire.

The distance between them is: 100m

Raw bandwidth (limited by comms devices) of the channel is: 10Mbit/s

Message to send is: 10,000 bytes

Sending device overhead: 200us

Receiving device overhead: 300us

Sample Question…

CLASS

ACTIVITY 1!

TODO: Calculate the Effective Bandwidth of this connection.

Get a copy of the handout. Can work in teams.

Solution: …

Example:

Distance 100m

Raw bandwidth 10Mbit/s

Message 10,000 bytes

Sending overhead 200us

Receiving overhead 300us

Transmission time = 80,000 bits

10Mbits/s
=

10bits/μs

80,000 bits = 8,000 μs

Time of flight =
3 x 108 m/s

100m =
3 x 106 m/s

0.33 μs= 1m

Total latency = Sending overhead + Transmission time +

time of flight + Receiver overhead

Total latency = 200μs + 8,000μs + 0.33μs + 300μs = 8,500.33μs

Effective bandwidth = Message size / total latency

Effective bandwidth = 80,000bits / 8,500μs = 9.41 Mbits/s

CLASS

ACTIVITY 1

SOLUTION!

TODO: Calculate the Effective Bandwidth of this connection.

94% efficient

 Communications is usually both explicit
and highly visible when using the message
passing (MP) programming model.

 Communications may have poor visibility when
using the data parallel programming model (e.g.
shared memory).

 For data parallel design on a distributed system,
communications may be entirely invisible, in that
the programmer may have no understanding (and
no easily obtainable means) to accurately
determine what inter-task communications is
happening.

 Synchronous communications

Require some kind of
handshaking between tasks that
share data / results.

May be explicitly structured in the code, under
control of the programmer – or it may happen at a
lower level, not under control of the programmer.

Synchronous communications are also referred to
as blocking communications because other work
must wait until the communications has finished.

 Asynchronous communications

Allow tasks to transfer data between one
another independently. E.g.: task A sends a
message to task B, and task A immediately
begin continues with other work. The point
when task B actually receives, and starts
working on, the sent data doesn't matter.

Asynchronous communications are often
referred to as non-blocking communications.

Allows for interleaving of computation and
communication, potentially providing less
overhead compared to the synchronous case

 Scope of communications:
Knowing which tasks must communicate with

each other

 Can be crucial to an effective design of a
parallel program.

 Two general types of scope:
Point-to-point (P2P)

Collective / broadcasting

 Point-to-point (P2P)
 Involves only two tasks, one task is the

sender/producer of data, and the other acting as
the receiver/consumer.

 Collective
Data sharing between more than two tasks

(sometimes specified as a common group or
collective).

Both P2P and collective communications can be
synchronous or asynchronous.

Typical techniques used for collective communications:

Initiator

Task Task Task

BROADCAST

Same

message

sent to all

tasks Initiator

Task Task Task

SCATTER

Different

message sent

to each tasks

Task

Task Task Task

GATHER

Messages from

tasks are

combined

togetherTask

Task Task Task

REDUCING

Only parts, or

reduced form,

of the

messages are

worked on

 There may be a choice of different
communication techniques

In terms of hardware (e.g., fiberoptics,
wireless, bus system), and

In terms of software / protocol used

 Programmer may need to use a
combination of techniques and
technology to establish the most efficient
choice (in terms of speed, power, size,
etc).

Onwards to distributed and shared memory architecture models …

Image sources:

Clipart sources – public domain CC0 (http://pixabay.com/)

PxFuel – CC0 (https://www.pxfuel.com/)

Pixabay

commons.wikimedia.org

Images from flickr

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/
https://www.pxfuel.com/
http://commons.wikimedia.org/wiki/File:Lei_de_moore_2006.png

	Slide 1
	Slide 2: Steps in Designing Parallel Programs
	Slide 3: The steps in designing parallel programs
	Slide 4: Lecture Overview
	Slide 5: Brief mention of systems thinking …
	Slide 6: Different perspectives: Gaining a better understand of the problem
	Slide 7: Video Clip: Systems Thinking
	Slide 8: Step 4: Communication
	Slide 9
	Slide 10: Step 4: Communications
	Slide 11: Communications
	Slide 12: Factors related to Communication
	Slide 13: Cost of communications
	Slide 14: Latency vs. Bandwidth
	Slide 15: Latency vs. Bandwidth
	Slide 16: Baud rate vs. Bandwidth
	Slide 17: Baudrate – an issue of standards (from a computing/telecoms perspective)
	Slide 18: Baudrate – an issue of standards (from a computing/telecoms perspective)
	Slide 19: Baudrate – an issue of standards (from a computing/telecoms perspective)
	Slide 20: Suggested further reading on baud rate and bandwidth
	Slide 21
	Slide 22: Effective bandwidth
	Slide 23: Effective bandwidth calc.
	Slide 24: Effective bandwidth calc.
	Slide 25: Visibility of Communications
	Slide 26: Synchronous vs. asynchronous
	Slide 27: Synchronous vs. asynchronous
	Slide 28: Scope of communications
	Slide 29: Scope of communications
	Slide 30: Collective communications
	Slide 31: Efficiency of communications
	Slide 32
	Slide 33

