
Presented by

Simon Winberg
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

http://creativecommons.org/licenses/by-sa/4.0/

Steps in Designing Parallel Programs

Hardcore

competent

HPES

programmers
(leading the

way to greater

feats)

Sequential programmers in

their comfort zone.

Hey, guys!

I forgot my warm

jacket, can we go

back??

…

The hardware may be done first… or later.

The main steps:

1. Understand the problem

2. Partitioning (separation into main tasks)

3. Granularity

4. Communications

5. Identify data dependencies

6. Synchronization

7. Load balancing

8. Performance analysis and tuning

next week

 Step 6: Synchronization

 Step 7: Load balancing

 Step 8: Performance analysis and tuning

The hardware may come first or later

The main steps:

1. Understand the problem

2. Partitioning (separation into main tasks)

3. Decomposition & Granularity

4. Communications

5. Identify data dependencies

6. Synchronization

7. Load balancing

8. Performance analysis and tuning

Step 6: Synchronization
EEE4120F

Design of Parallel Programs

 Barrier

 Locking / Semaphores

 Synchronous communication operations

 All tasks are involved

 Each task does work until it reaches the
barrier, and then blocks.

 When the last task reaches the barrier all
the tasks are synchronized.

 What happens next?…
Section of work is done or

Tasks are automatically released to continue
their work… programmer usually decides.

 May concern any number of tasks
 Usually used to serialize / protect access to

global data or critical section of code.
 Only one task at a time may have the lock /

semaphore.
 Tasks can attempt to get the lock need to

wait for the task that has the lock to release
it, granted on a FCFS basis.

 Usually blocking, could be non-blocking
(i.e., do other work until lock is available)

 Concerns only tasks executing a
communication operation (or comms op)

 When a task performs a comms op,
some form of coordination is required
with other task(s) involved with this
communication.
For example, before a task can do a send

operation, it needs to first receive a clear to
send (CTS) signal from the task it wants to
send to.

Step 7: Load Balancing
EEE4120F

 Distributing work among tasks so
that all tasks are kept busy most of the time

 Mainly a minimization of idle time

 Relevant to parallel programs for optimizing
performance.

 e.g., if every tasks encounters a barrier synchronization
point, the slowest task will end up limiting the overall
performance.

 Relevant to costing, e.g. deciding number of
processors needed (can also be used in
substantiating the need for a more, rather than
less, expensive platform)

…

typedef struct { unsigned start, end; } LogEntry;

LogEntry logt[1024];

int logn = 0;

unsigned prog_start, prog_end;

void* task (void* arg)

{

unsigned int end;

unsigned int start = clock();

// do work

// calculate time it took

end = clock();

// update time log

pthread_mutex_lock(&mutex);

logt[logn].start = start; logt[logn].end = end; logn++;

pthread_mutex_unlock(&mutex);

}

idle

busy

… in main() get prog_start time, create mutex & threads, wait join, get prog_end time.

prog_start

prog_end

logt[0].start

logt[1].end

logt[1].start

logt[0].end

...

double calc_stat_stddev ()

{ // calculate standard deviation of busy times

int i;

double sum = 0;

for(i = 0; i < logn; i++) sum += logt[i].end - logt[i].start;

double mean = sum / logn;

double sq_diff_sum = 0;

for(i = 0; i < logn; ++i) {

double diff = logt[i].end - logt[i].start - mean;

sq_diff_sum += diff * diff;

}

double variance = (double)sq_diff_sum / logn;

return sqrt(variance);

}

…

Task 1 Time idletime busy

Task 2 Time idletime busy

Task 3 Time idletime busy

Task 4 Time idletime busy

Well balanced – low standard deviation in busy time*

Overall Time idletime busy

time busy

Time idlebusy

Time idletime busy

Time idlebusy

Overall Time idletime busy

Poorly balanced – high standard deviation in busy time

* You could obviously use idle time – but that’s probably more difficult if using code in prev. slide

Task 1

Task 2

Task 3

Task 4

 Two general techniques…

1. Equally partition work as a preprocess

 Workload can be determined accurately
before starting the operation

2. Dynamic work assignment

 For operations where the workload is
unknown, or cannot be effectively calculated,
before starting the operation

 Examples include

Array or matrix operations for which each task
performs similar work. Can evenly distribute the
data set among tasks / available processors.

Loop iterations where the work in each iteration
is similar, and can be evenly distributed.

May be less easy to do if using a heterogeneous mix of machines that have

varying performance characteristics. In such cases, a comprehensive analysis tool

may be needed to determine load imbalances and revise work disctribution.

 Examples include

Sparse arrays/matrices (i.e., if matrix simply
divided equally, some tasks may have lots to do
but others little to do)

N-body simulations (particles owned by some
tasks may involve more work than others)

Adaptive grid refinement (some tasks may need
to refine their grips)

General principle: tasks that are busier send a request for assistance, whereas

tasks that complete quickly are available to help the busier tasks.

Load Balancing with Cloud Computing.mp4

Recommended video clip to view

https://www.youtube.com/watch?v=_xH5POea0Jc

 Vertically:
 More power, but centralized (one app. may run

faster / more response / less latency for RT)
 Adding CPUs + memory to one system
 More dependent on one machine / group of closely

coupled machines

 Horizontally:
 More power, but wider distribution (more apps

able to run at one time)
 Simpler scalability
 More distribution / redundancy / better risk

management
…

M
O

P
S

M
O

P
S

Step 8: Performance

analysis
EEE4120F

 Simple approaches involve using timers
(i.e., as shown in previous code snippet)

Usually quite straightforward for a serial
situation or global memory

 Monitoring and analyzing parallel
programs can get a whole lot more
challenging than for the serial case

May add comms overhead

Needing synchronization to avoid corrupting
results, … could be a nontrivial algorithm itself

 MPI_Wtime

Returns the elapsed wall clock time in seconds
(a double) on the calling processor

 MPI_Wtick

Returns the timer resolution in seconds (a
double) of MPI_Wtime.

Note: MPI is the topic of a later lecture.

 gettimeofday
Very portable, part of the StdC library

Should be available on any Linux system

Returns time in seconds and
microseconds since midnight January 1
1970

Uses struct timeval comprising

tv_sec : number of seconds

tv_usec : number of microseconds*

Converting to microseconds will use huge
numbers, rather work on differences

* Word of caution: some implementations always return 0 for the usec field!!

On Cygwin, the resolution is only in milliseconds, so tv_usec in multiples of 1000.

Not provided in DevC++.

#include <stdio.h>

#include <sys/time.h>

#include <time.h>

struct timeval start_time, end_time; // variables to hold start and end time

int main() {

int tot_usecs;

int i,j,sum=0;

gettimeofday(&start_time, (struct timezone*)0); // starting timestamp

/* do some work */

for (i=0; i<10000; i++)

for (j=0; j<i; j++) sum += i*j;

gettimeofday(&end_time, (struct timezone*)0); // ending timestamp

tot_usecs = (end_time.tv_sec-start_time.tv_sec) * 1000000 +

(end_time.tv_usec-start_time.tv_usec);

printf("Total time: %d usec.\n", tot_usecs);

}

see timing.c code file

Provided previously

 Process of measuring performance of DS

 A program that Quantitatively evaluates
computer Hardware and software
resources

 Benchmark suites – sets of benchmarks
defined to get better system picture

 Suitable benchmark for a system leads to
an effective system

 What can be benchmarked? (In DSP
Compiler, Processor, Platform)

 Compiler – Converts High Level
Language to Assembly language thus
we benchmark compiler efficiency

 The Processor – code should be an
Assembly (No more high level code)

 Platform – Written in High Level
language(Processor & Compiler)

(Recap mostly,

see earlier lecture)

Supplementary

reading

 In DSP/HPEC systems we benchmark
Cycle count, Data and Program memory
usage, Execution time and Power
consumption

 What can we benchmark in
Databases/Web servers (i.e Oracle,
MySQL, SQL Server)?

 SPEC defined several benchmarks in the
digital world - SPECweb99, SPECmail,
etc.

(This point mentioned already, next two are new…)

Supplementary

reading

 Metrics (MIPS, MOPS, MFLOPS, etc.) –
some of these not really meaningful in
RISC architectures (why?)

 Complete DSP Application

consumes time and effort as well as memory
because it measure the whole system

 DSP Algorithm Kernels

extracted from real DSP programs and
consist of small loops which perform number
crunching, bit processing, etc.

 EEMBC (pron. embassy) – For embedded
System and written in C

 BDTIMARK – a DSP benchmark suite

 Check this paper for a List of FPGA benchmarking
types: Raphael Njuguna: A Survey of FPGA Benchmarks
Available at: http://www.cse.wustl.edu/~jain/cse567-
08/ftp/fpga.pdf) -- might be in exam

 More Reading: Performance evaluation
and Benchmarking, Lizy K. John and
Lieven Eeckhout, Taylor & Francis Group

Supplementary

reading

http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga.pdf
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga.pdf

6. Synchronization

7. Load balancing

8. Performance analysis and tuning

Over to you to work on OpenCL prac or have an early start on Prac3

?
?

??

?

??

?

?

?

?

?

?

Suggestions for further reading, slides partially based / general principles

elaborated in:

• A Survey of FPGA Benchmarks Available at:

http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga.pdf

• Data dependencies suggested reading:

http://sc.tamu.edu/help/power/powerlearn/html/ScalarOptnw/tsld036.htm

• Load Balancing with Cloud Computing.

https://www.youtube.com/watch?v=_xH5POea0Jc

• FPGA benchmarking types: Raphael Njuguna: A Survey of FPGA

Benchmarks Available at: http://www.cse.wustl.edu/~jain/cse567-

08/ftp/fpga.pdf

• “Performance evaluation and Benchmarking”, Lizy K. John and Lieven

Eeckhout, Taylor & Francis Group

http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga.pdf
http://sc.tamu.edu/help/power/powerlearn/html/ScalarOptnw/tsld036.htm
https://www.youtube.com/watch?v=_xH5POea0Jc
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga.pdf
http://www.cse.wustl.edu/~jain/cse567-08/ftp/fpga.pdf

Image sources:

Man running up stairs - Wikipedia (open commons)

Chocolate Chip Biscuit - Wikipedia (open commons)

Scales, Checked Flag - Open Clipart (http://openclipart.org)

Calendar Planning Image, Note pad – Pixabay (Public Domain CC0)

Yoga lady - adapted from Open Clipart

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://openclipart.org/

Image sources:

Clipart sources – public domain CC0 (http://pixabay.com/)

PxFuel – CC0 (https://www.pxfuel.com/)

Pixabay

commons.wikimedia.org

Images from flickr

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/
https://www.pxfuel.com/
http://commons.wikimedia.org/wiki/File:Lei_de_moore_2006.png

	Slide 1
	Slide 2: Steps in Designing Parallel Programs
	Slide 3: The steps in designing parallel programs
	Slide 4: Lecture Overview
	Slide 5: Steps in designing parallel programs
	Slide 6: Step 6: Synchronization
	Slide 7: Types of Synchronization
	Slide 8: Barrier
	Slide 9: Locking / Semaphores
	Slide 10: Synchronous communication operations
	Slide 11: Step 7: Load Balancing
	Slide 12: Load Balancing
	Slide 13: Load Balancing – simple trial technique
	Slide 14: Load Balancing – simple trial technique (cont)
	Slide 15: Load Balancing
	Slide 16: Achieving load balance
	Slide 17: Achieving balance – Work assignment as pre-process
	Slide 18: Achieving balance – Work assigned dynamically
	Slide 19: Vertical vs. horizontal load balancing
	Slide 20: Vertical vs. horizontal load balancing
	Slide 21: Step 8: Performance analysis
	Slide 22: Performance analysis
	Slide 23: MPI Timing functions
	Slide 24: StdC: gettimeofday
	Slide 25: gettimeofday example
	Slide 26: Benchmarking
	Slide 27: Benchmarking (cont…)
	Slide 28: Benchmarking: what to measure
	Slide 29: Benchmark: Approaches
	Slide 30: Benchmarking: Types
	Slide 31
	Slide 32: Questions?
	Slide 33: Further Reading / Refs
	Slide 34
	Slide 35

