
Presented by

Simon Winberg
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

(lecture for double period if including slide 29 activity)

http://creativecommons.org/licenses/by-sa/4.0/

 Towards HPES systems design and
programming

 Heterogeneous Computing Solutions

 Steps in parallelizing programs

Understand the problem

Partitioning

Granularity

Identify data
dependencies

 We have looked into essential aspects of
(single-core) processor design, and thinking
about parallel systems.

 Thinking point regards parallel system
design:
Does it make more sense to start on the design

of a parallel computing solution by

Deciding the parallel platform/hardware first… or

Deciding the data and processing needs first?

 … In this course, the direction is to start thinking about the data

and processing, and then elaborating on methods and

considering hardware constructs by which these are delivered.

Steps in Designing Parallel Programs

… and that’s why we will delve into

Steps in Designing Parallel Programs

Hardcore

competent

HPES

programmers
(leading the

way to greater

feats)

Sequential programmers in

their comfort zone.

…

The hardware may be done first… or later.

The main steps:

1. Understand the problem

2. Partitioning (separation into main tasks)

3. Granularity

4. Communications

5. Identify data dependencies

6. Synchronization

7. Load balancing

8. Performance analysis and tuning

see

lecture 10

P
A

R
T

 1
/3

P
A

R
T

 3
/3

Step 1: Understanding the

Problem
EEE4120F

 Make sure that you understand the
problem, that is the right problem,
before you attempt to formulate a
solution

 Some problems aren’t suited to
parallelization – it just might not be
parallelizable

Example of non-parallelizable problem:

Calculating the set of Fibonacci series e.g., Fib(1020) as quickly as possible.

Fib(n) = n } if n < 2

= Fib(n – 1) + Fib(n – 2) } otherwise

(i.e. ‘problem validation’)

 Identify: Critical parts or ‘hotspots’
Determine where most of the work needs to be

done. NB: Most scientific and technical
programs accomplish the most substantial
portion of the work in only a few small places.

Focus on parallelizing hotspots. Ignore parts of
the program that don’t need much CPU use.

Consider which profiling techniques and
Performance Analysis Tools (‘PATs’) to use

: marks key point(s)

 Identify: bottlenecks
Consider communication, I/O, memory and

processing bottlenecks

Determine areas of the code that execute
notably slower than others.

Add buffers / lists to avoid waiting

Attempt to avoid blocking calls (e.g., only block
if the output buffer is full)

Try to rearrange code to make loops faster

: marks key point(s)

 General method:
 identify hotspots, avoid unnecessary

complication, identify potential inhibitors to the
parallel design (e.g., data dependencies).

Consider other algorithms…

This is an most important aspect of designing
parallel applications.

Sometimes the obvious method can be
greatly improved upon though some lateral
thought, and testing on paper.

 This also brings in aspects of Lecture 1,
‘the Landscape of Parallel Computing’*

 Considering the 7 questions:
1. What are the applications?

2. What are the common kernels?

3. What are the hardware building blocks?

4. How to connect them?

5. How to describe allocations and kernels?

6. How to program the hardware?

7. How to measure success?
* The Landscape of Parallel Computing Research: A View from Berkeley” by Krste Asanovic, Ras Bodik,

Bryan Catanzaro, et al.

Prescribed

reading

Step 2: Partitioning
EEE4120F

 This step involves breaking the problem
into separate chunks of work, which can
then be implemented as multiple
distributed tasks.

 Two typical methods to partition
computation among parallel tasks:

1. Functional decomposition or

2. Domain decomposition

The

Problem
partitioning

: marks key point(s)

Task #1:

1.

2.

3.

4.

Task #2:

1.

2.

3.

Task #3:

1.

2.

3.

4.

5.

Task #4:

1.

2.

Functional decomposition is suited to problems that can be split into different tasks

Decomposing the problem into tasks to be done.

 Example applications
Environment modelling

Simulating reality

Signal processing, e.g.:

Pipelined filters: in → P1 → P2 → P3 → out

Here P1 is filled first, its result is sent to P2
while simultaneously P1 starts working on a
block of new input, and so on.

Climate modelling (e.g., simultaneously running
simulations for atmosphere, land, and sea)

Prescribed

reading

The Data

Involves separating the data, or taking different ‘views’ of

the same data. e.g.

View 1 : looking at frequencies (e.g. FFTs)

View 2 : looking at amplitudes

Each parallel task works on its own portion of the data, or

does something different with the same data

Result

The Data

View 1 View 2
Task1 Task2 Task3

Result
Task1 Task2

 Good to use for problems where:
Data is static (e.g., factoring; matrix

calculations)

Dynamic data structures linked to a single
entity (where entity can be made into
subsets) (e.g., multi-body problems)

Domain is fixed, but computation within
certain regions of the domain is dynamic
(e.g., fluid vortices models)

Prescribed

reading

Many possible ways to divide things up. If you want to look at it visually…

continuous Blocked (same-

size partitions)

Blocked

Interlaced Interleaved or

cyclic

Other methods can be done

(terms introduced in Lecture 7)

Step 3: Granularity
EEE4120F

Granularity of the Problem

vs.

Granularity of the Parallelism

 Granularity of the problem

How big or small are the parts that the
problem has been decomposed into?

How interrelated are the sub-tasks

: marks key point(s)

Fine Grained:

Each calculation highly dependent on other parts of the

problem space. Requires a great deal of communication.

Coarse Grained:

Each calculation largely independent of other parts of the

problem space. Requires only a little communication.

See also explanation on https://en.wikipedia.org/wiki/Granularity

https://en.wikipedia.org/wiki/Granularity

 This ratio can help to decide is a problem
is a fine- or coarse-grained problem.

1 : 1 = Each intermediate result needs a
communication operation

100 : 1 = 100 computations (or intermediate
results) require only one communication
operation

1 : 100 = Each computation
needs 100 communication
operations

 Coarse grained:
 Breaking problems into larger pieces

 Usually, low level of task inter-dependence and fewer
interrelations (e.g., can separate into parts whose
elements are unrelated to other parts)

 These solutions are generally easier to parallelize than
fine-grained, and

 Usually, parallelization of these problems provides
significant benefits.

2 1 1 9 3 3

thread

#1

thread

#2 ✓
e.g. sequence search to find a

number followed by its square root.

e.g. Computation:Communication = 100:1

(note: we’re assuming sqrt will take much computation)

✓

 Fine-grained problem:

Problem broken into pieces that have high
levels of inter-dependence. Or difficult to
partition the data because each result is
dependent on much of the available data.

e.g.: having to look at relations

between neighboring dust

particles to determine how a

dust cloud behaves.

e.g. Computation:Communication = 1:100

let’s next consider:

granularity of problem vs

granularity of parallelism…

 Fine-grained problem with coarse-grained
parallelism:
 Result(s) of the computation are highly dependent

on much of the data… but can be done as many
parallel operations.

 Example
 Dot-product of two vectors : result is a single scalar

value – so overall obtaining result is fine-grained
problem as it depends on all the other values and
their ordering, but can be sub-divided into many
smaller tasks that provide partial results, so has
coarse-grained parallelism.
a . b = a1 x b1 + a2 x b2 + … an x bn

2 1 1 9 3 3

2 1 1 9 3 3

The result, a single value in this case, is fine-

grained, depending on all the available data
(but the computation is fairly course-grained, can be split-

up into sub-tasks of ai x bi which are then summed)

 Course-grained

Result(s) of the computation dependent on
only a small portion of the data

 Example

Increment each element in a vector.
a + 1 = [a1 + 1,+ a2 + 1, … an + 1]

Each result, which happens to be n results in
this case, depends on only one item of data.

 Embarrassingly Parallel:

So coarse that there’s no or very little
interrelation between parts/sub-processes

2 3 2 1 4 0

1 2 3 4 3 2

0

1 0 3 2 4 1

2 2 0 3 4 1

e.g. double all

the entries in a

matrix.
1 2 3 4 3

4 6 4 2 8 0

2 4 6 8 6 4

0

2 0 6 4 8 2

4 4 0 6 8 2

2 4 6 8 6

e.g. Computation:Communication = 1:0

NB: also called “embarrassingly fine-grained parallel” – about to hear why…

 Granularity of parallelism:
 How small and plentiful are the tasks (computing parts

or threads) the program is broken into.

 It is more about the implementation.
 Is not answering “how interrelated are the

computations”
 Is about: how small are the pieces of computing

Granularity of ParallelismGranularity of Problem

 Which of the following are more fine-
grained problems, and which are more
coarse-grained problems?
Matrix multiply

FFTs

Decryption code breaking

 (deterministic) Finite state machine validation
/ termination checking

Map navigation (e.g., shortest path)

Population modelling

Supplementary

reading

Step 5: Identify Data

Dependencies
EEE4120F

In dog-think: I’m not

budging from here

until I’m done.

Woof!

 A dependency exists between statements
of a program when the order of
executing the statements affects the
results of the program.

 A data dependency is caused by different
tasks accessing the same variables (i.e.,
memory addresses).

 Dependencies are a major inhibition to
developing parallel programs.

: marks key point(s)

 Common approaches to working around
data dependencies:
For distributed memory architectures: tend to

use synchronization points (periods when
sets of shared data is communicated
between tasks).

Shared memory architectures: make use of
read/write synchronize operations (no
sending of data, just temporarily block other
tasks from reading/writing a variable).

• Loop carried data dependence:

dependence between statements in different iterations

• Loop independent data dependence:

dependence between statements in the same iteration

• Lexically forward dependence:

source precedes the target lexically

• Lexically backward dependence:

opposite from above

• Right-hand side of an assignment precede the left-hand

side

Source: http://sc.tamu.edu/help/power/powerlearn/html/ScalarOptnw/tsld036.htm

http://sc.tamu.edu/help/power/powerlearn/html/ScalarOptnw/tsld036.htm

1. Understand the problem

2. Partitioning

3. Granularity

4. ….

5. Identify data dependencies

Over to you to work on OpenCL prac or have an early start on Prac3

Next two slides discusses solution to last

week’s microcoding homework assignment.

• http://unilearning.uow.edu.au/critical/1a.html

Some resources related to critical analysis and critical thinking:

• http://www.deakin.edu.au/current-students/study-support/study-

skills/handouts/critical-analysis.php

An easy introduction to critical analysis:

An online quiz and learning tool for understanding critical thinking:

Some resources related to systems thinking:

• https://www.youtube.com/watch?v=lhbLNBqhQkc

• https://www.youtube.com/watch?v=AP7hMdnNrH4

Suggestions for further reading, slides partially based / general principles

elaborated in:

• https://computing.llnl.gov/tutorials/parallel_comp/

• http://www2.physics.uiowa.edu/~ghowes/teach/ihpc12/lec/ihpc12Lec_Desig

nHPC12.pdf

Supplementary

reading

http://unilearning.uow.edu.au/critical/1a.html
http://www.deakin.edu.au/current-students/study-support/study-skills/handouts/critical-analysis.php
http://www.deakin.edu.au/current-students/study-support/study-skills/handouts/critical-analysis.php
https://www.youtube.com/watch?v=lhbLNBqhQkc
https://www.youtube.com/watch?v=AP7hMdnNrH4
https://computing.llnl.gov/tutorials/parallel_comp/
http://www2.physics.uiowa.edu/~ghowes/teach/ihpc12/lec/ihpc12Lec_DesignHPC12.pdf
http://www2.physics.uiowa.edu/~ghowes/teach/ihpc12/lec/ihpc12Lec_DesignHPC12.pdf

Image sources:

Clipart sources – public domain CC0 (http://pixabay.com/)

PxFuel – CC0 (https://www.pxfuel.com/)

Pixabay

commons.wikimedia.org

Images from flickr

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/
https://www.pxfuel.com/
http://commons.wikimedia.org/wiki/File:Lei_de_moore_2006.png

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Toward HPES system design and programming
	Slide 4
	Slide 5: Steps in Designing Parallel Programs
	Slide 6: The steps in designing parallel programs
	Slide 7: Step 1: Understanding the Problem
	Slide 8: Step 1: Understanding the problem
	Slide 9: Step 1: Understanding the problem
	Slide 10: Step 1: Understanding the problem
	Slide 11: Step 1: Understanding the problem
	Slide 12: Step 1: Identifying the Problem: where the solution may fit…
	Slide 13: Step 2: Partitioning
	Slide 14: Step 2: Partitioning
	Slide 15: Functional decomposition
	Slide 16: Functional decomposition
	Slide 17: Domain decomposition
	Slide 18: Domain decomposition
	Slide 19: Domain decomposition
	Slide 20: Step 3: Granularity
	Slide 21: Step 3: Granularity of the Problem
	Slide 22: The Ratio of Computation : Communication
	Slide 23: Decomposition and Problem Granularity
	Slide 24: Decomposition and Granularity
	Slide 25: Example of fine-grained problem, coarse-grained parallelism
	Slide 26: Example of Coarse-grained
	Slide 27: Decomposition and Granularity
	Slide 28: Granularity of Parallelism
	Slide 29: Homework task
	Slide 30: Step 5: Identify Data Dependencies
	Slide 31: Data dependencies
	Slide 32: Data dependencies
	Slide 33: Common data dependencies
	Slide 34
	Slide 35: Further Reading / Refs
	Slide 36

