
Presented by

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Planned to be double period lecture

http://creativecommons.org/licenses/by-sa/4.0/

 Parallel Computing Fundamentals

 Large Scale Parallelism

 Mainstream parallel

 Classic Parallel approaches

 Flynn’s Taxonomy

 Some Calculations

Effective parallelism

Parallel Efficiency

Gustafson’s Law

Parallel Systems
EEE4120F: Digital Systems

A?

B?

C?

+ *

X !

Y !

-

Hardware Reconfigurable

Computer

Software

Processor

e.g. PCBs, ASICs

Advantages:

• High speed &

performance

• Efficient (possibly

lower power than idle

processors)

• Parallelizable

Drawbacks:

• Expensive

• Static (cannot change)

e.g. IBM Blade, FPGA-based

computing platform

Advantages:

• Faster than software alone

• More flexible than software

• More flexible than hardware

• Parallelizable

Drawbacks:

• Expensive

• Complex

(both s/w

& h/w)

e.g. PC, embedded

software on

microcontroller

Advantages:

• Flexible

• Adaptable

• Can be much

cheaper

Drawbacks:

• The hardware is static

• Limit of clock speed

• Sequential

processing

this term

 Most server class machines today are:

 PC class SMP’s (Symmetric Multi-Processors *)

 2, 4, 8 processors - cheap

 Run Windows & Linux

 Delux SMP’s

 8 to 64 processors

 Expensive:

16-way SMP costs ≈ 4 x 4-way SMPs

 Applications: Databases, web servers, internet
commerce / OLTP (online transaction processing)

 Newer applications: technical computing, threat
analysis, credit card fraud...

SMP offers all processors and memory

on a common front side bus (FSB –bus

that connects the CPU and

motherboard subsystems).

* Also termed “Shared Memory Processor” (but you might get 0 for giving this alternate term in a test)

 Hundreds of processors, typically as SMPs clusters

 Traditionally
 Often custom built with government funding (costly!

10 to 100 million USD)

National / international resource

Total sales tiny fraction of PC server sales

 Few independent software developers

 Programmed by small set of
majorly smart people

 Later trends
 Cloud systems

 Users from all over

 E.g. Amazon EC, Microsoft Azure

 Some application examples

Code breaking (CIA, FBI)

Weather and climate modeling / prediction

Pharmaceutical – drug simulation, DNA
modeling and drug design

Scientific research (e.g., astronomy, SETI)

Defense and weapons development

 Large-scale parallel systems are often used
for modelling

HP Intel 5110P Xeon Phi Coprocessor Kit
Intel Xeon Phi
Where and why it’s no longer being made,
replaced by Xeon Scalable Platform

And… some of this it may involve

designing specialized compute

architectures for the need (using a

combination of languages and tools

e.g. OpenCL / Verilog, C, R, etc.)

Digital accelerator cards (including GPGPUs) are

increasing in popularity, including in data centres.

Xilinx Alevo: Adaptable

Accelerator Cards for Data Centres
https://www.xilinx.com/products/boards-and-

kits/alveo.html

Program with OpenCL or Xilinx’s

owns accelerator design suite.

Intel Ice Lake
(10 nm process)
10th generation
core, successor
for Xeon Phis.

Core i7 1068G7 (2020 debut) 4 CPU
cores + 64 Iris+ GPCPU cores

Replaced by (from
2020)

(launched

end 2018) (ended 2019)

* What was it said in the “Berkeley Landscape” … “Small is beautiful” and “manycore is the future of Computing”.

https://www.intel.com/content/www/us/en/support/products/92650/processors/intel-xeon-phi-processors/intel-xeon-phi-processor-x200-product-family.html
https://www.nextplatform.com/2018/07/27/end-of-the-line-for-xeon-phi-its-all-xeon-from-here/
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html

Classic Parallel
EEE4120F

 Single Program Multiple Data (SPMD)
 Consider it as running the same program, on different data

inputs, on different computers (possibly) at the same time

 Multiple Program Multiple Data (MPMD)
 Consider this one as running the same program with

different parameters settings, or recompiling the same code
with different sections of code included (e.g., uisng #ifdef
and #endif to do this)

 Following this approach performance statistics can be
gathered (without necessarily any parallel code being
written) and then evaluated after the effect to deem
the feasibility of implementing a parallel (e.g. actual
pthreads version) of the program.

*Informally know as the lazy parallel programming model.

NB: Class

Activity A

Can consider the SPSD (i.e. Single Program Single Data) as

the case where the whole program is run once on all the data.

Terms
EEE4120F

 Observed speedup =

 Parallel overhead:
Amount of time to coordinate parallel tasks

(excludes time doing useful work).
Parallel overhead includes operations such as:

Task/co-processor start-up time,
Synchronizations, communications,
parallelization libraries (e.g., OpenMP,
Pthreads.so), tools, operating system, task
termination and clean-up time

Wallclock time initial version

Wallclock time refined version

Wallclock time sequential (or gold)

Wallclock time parallel version
=

The parallel overhead of the lazy parallel model could clearly be extreme, considering that is would rely on

manual intervention to (e.g.) partition and prepare the data before the program runs.

 Embarrassingly Parallel
 Simultaneously performing many similar, independent

tasks, with little to no coordination between tasks.

 Massively Parallel
 Hardware that has very many processors (execution of

parallel tasks). Can consider this classification of 100
000+ parallel tasks.

 { Stupidly Parallel }
 While this isn’t really an official term it typically relates

to instances where a big (and possibly very complex)
coding effort is put into developing a solution that in
practice has negligible savings or worse is a whole lot
slower (and possibly more erroneous/buggy) than if it
was just left as a simpler sequential implementation.

Using scalar product pthreads type

implementation for scenarios…

Introducing to some important terms

related to shared memory

[a1 a2 a1 a2 … am-1] [b1 b2 b1 b2 … bm-1]

Thread

1
sum1

Vectors in

global / shared

memory

[am am+1 am+2 … an] [bm bm+1 bm+2 … bn]

Thread

2
sum2

starts
main()

sum =

sum1+sum2

Assuming a 2-core machine

1 1

2 2

a b

main()

Memory access

by thread

[a1 a3 a5 a7 … an-2] [b1 b3 b5 b7 … bn-2]

Thread

1
sum1

Vectors in

global / shared

memory

[a2 a4 a6 … an-1] [b2 b4 b6 … bn-1]

Thread

2
sum2

starts
main()

sum =

sum1+sum2

Assuming a 2 core machine

a b

* ‘Data striping’, ‘interleaving’ and ‘interlacing’ usually means the same thing but not always.

See further explanation between these on: https://wikidiff.com/interleave/interlace

main()

Memory access

by thread

NB: benefits of interleaving as a means to improve robustness and access of memory
interlacing vs. interleaving : see comments

https://wikidiff.com/interleave/interlace

Contiguous

Partitioned (or separated or split)

Interleaved/interlaced (or alternating or data striping)

Interleaved – large strides (e.g. row of image pixels at a time)

Interleaved – small stride (e.g. one word stride)

(the ‘stride’ in data interleaving or data striping refers to the size of the blocks alternated, generally

this is fixed but could be changeable, e.g. the last stride might be smaller to avoid padding data.)

Flynns Taxonomy of Processor

Architectures

EEE4120F

Type

A

Type

B

Type

C

Type

D

Type

E

Type

F

Type

G

Type

H

Type

I

Type

J

 Flynn’s (1966) taxonomy was developed
as a means to classify parallel computer
architectures

 Computer system can be fit into one of
the following four forms:

SISD

Single Instruction

Single Data

SIMD

Single Instruction

Multiple Data

MISD

Multiple Instructions

Single Data

MIMD

Multiple Instructions

Multiple Data

Not to be confused with the terms of “Single Program Multiple Data (SPMD)” and

“Multiple Program Multiple Data (MPMD)” mentioned earlier.

MI

MD

 This is (obviously) the classic von Neumann
Computer: serial (not parallel) computer, e.g.:
 Old style single core PC CPUs, e.g. i486

 Single instruction →
 One instruction stream acted on by

the CPU during any one clock cycle

 Single data →
 Only one input data stream for any

one clock cycle

 Deterministic execution

0x1000 LD A,[0x2002]

0x1003 LD B,[0x2004]

0x1006 ADD A,B

0x1007 SHL A,1

0x1008 ST A,[0x2000]

x = 2 * (y + z);

 A form of parallel computer
 Early supercomputers used this model first

 Nowadays it has become common – e.g., used in
modern computers on GPUs

 Single instruction →
 All processing units execute the

same instruction for any given
clock cycle

 Multiple data →
 Each processing unit can

operate on a different data
element

LD AX,[DX+0]

LD BX,[EX+0]

ADD AX,BX

SHL AX,1

ST AX,[CX+0]

y= [1 2 3 4]

z = [2 3 4 5]

x = 2 * (y + z)

…

LD AX,[DX+3]

LD BX,[EX+3]

ADD AX,BX

SHL AX,1

ST AX,[CX+3]

…

…

CPU 1 CPU 4

 Runs in lockstep (i.e., all elements
synchronized)

 Works well for algorithms with a lot of
regularity; e.g. graphics processing.

 Two main types:

 Processor arrays

 Vector pipelines

 Still highly deterministic (know the same
operation is applied to specific set of data – but
more data to keep track of per instruction)

 Vector pipelines

 IBM 9000, Cray X-MP,
Fujitsu vector processor,
NEC SX-2, Hitachi S820, ETA10

 Processor arrays

 Thinking Machine CM2,
MasPar MP-1 & MP-2,
ILLIAC IV

 Graphics processor units usually use SIMD

Cray X-MP

MasPar MP-1

 Single data stream fed into multiple
processing units

 Each processing unit works on data
independently via independent
instruction streams

 Few actual examples of this class of
parallel computer have ever existed

………

 Possible uses? Somewhat intellectual?

 Maybe redundant! (see next slide)

 Possible example application:

 Different set of signal processing operations working
the same signal stream

x = +MAXINT

Example:

Simultaneously find the min and max input, and do a sum of inputs.

x = -MAXINT x = 0

If A<x then x = A If A>x then x =

A

x = x + A

A = input

CPU 1 CPU 2 CPU 3

 The most common type of parallel computer (most
late model computers, e.g. Intel Core Duo, in this
category)

 Multiple Instruction →
 Each processor can be executing a different instruction

stream

 Multiple Data →
 Every processor may be working with a different data stream

 Execution can be asynchronous or synchronous; non-
deterministic or deterministic

 Examples

 Many of the current supercomputers

 Networked parallel computer clusters

 SMP computers

 multi-core PCs

 MIMD architectures could include
all the other models. e.g.,
 SISD – just one CPU active, others running NOP

 SIMD – all CPUs load the same instruction but
apply to different data

 MISD – all CPUs load different instructions
but apply it to the same data

AMD Opteron

IBM BlueGene

Maximum Effective Parallelism
EEE4120F

Significant Tradeoff:

Consideration for

- hardware

- software

This refers to the point of the number

of cores / amount of parallelism

beyond which additional parallelism

provides no further benefit or (worse)

may reduce performance.

Significant Tradeoff:

This refers to the point of the number of

cores / amount of parallelism beyond which

additional parallelism provides no further

benefit or (worse) may reduce performance.

cores / available parallelism

P
e

rf
o

rm
a

n
c
e

im
p

ro
v
e

m
e

n
t

(s
p

e
e

d
u

p
)

cores / available parallelism

c
o

s
t
o

f
p

a
ra

lle
lis

m

cores / available parallelism

s
ta

rt
u

p
ti
m

e

Hardware Software

cores / available parallelism

c
o

m
m

s
c
o

s
t
a

n
d

 t
im

e

 Remember from Amdahl:

S = TS / TP (i.e. sequential time over parallel time)

 You can use these equations to
approximate behaviour of modelled
systems.

 E.g.: to represent speedup, comms
overhead, cost of equipment, etc. and use
calculations to estimate optimal selections.
(simple example to follow)

 Quick estimation for maximum effective
parallelism

Solution follows shortly!
Please try it for your self, or work with a buddy to think

about how to respond to this question.

N Proc (ms) Comms (ms) Total (ms)

1 100.000 0 100.000

2 50.000 10 60.000

4 25.000 20 45.000

8 12.500 40 52.500

16 6.250 80 86.250

32 3.125 160 163.125

64 1.563 320 321.563

Could do some rough

calculations (or use

binary search)…

check:

N=2,

N=64,

N=8,

N=4 ✓

2nd part of Amdahl’s law video

Amdahl2.flv

Understanding Parallel Computing (Part 2): The Lawn Mower Law LinuxMagazine

If you haven’t already watched this please do!

https://www.youtube.com/watch?v=ehyO7mxeU74
https://www.youtube.com/user/LinuxMagazine

 We can think of the efficiency of various
things, e.g. power systems, motors, heaters
etc. We can also think of the efficiency of
parallel computing…

 Parallel Efficiency

 Defined as the:

ratio of speedup (S) to the number of processors (p)

• Parallel Efficiency measures the fraction of time

for which a processor is usefully used.

• An efficiency of 1 is ideal (>1 means you may be

harnessing energy from another dimension ☺)

Sp

p (number cores)

sub-linear speedup

linear speedup

super-linear

speedup

(awesome!)

Parallel Efficiency

• p = number processors

• Ts = exe time of the seq. alg.

• Tp = exe time of the parallel alg.

with p processors used

• Sp= speedup

(linear being the realistic ideal)

 Gustafson's law =
 The theoretical speedup in latency of the execution

of a task at fixed execution time that can be
expected of a system whose resources are improved.

 A follow-up to Amdahl's Law

* also referred to, more fairly, as the Gustafson–Barsis's law

Speedup S gained by N processors (instead of just one) for a task with

a serial fraction s (not benefiting from parallelism) is as follows:

formulation:

S = speedup, N = cores, s = serial portion

Using different variables, can be formulated as:

Slatecy = theoretical speedup in latency of the execution of the whole task

p = % of workload before the improvement that will be speeded up.

s = speedup in latency of part of the task benefiting from improved parallelism

This is a plot of

s going from 0.5 to 2

p going from 10% to 100%

As you can see, the latency is

reduced (i.e. Slatency increased)

as s increases and p increases.

But for e.g. a real speedup of 2

you actually need p=100% (i.e.

the entire workload improved) to

achieve it.

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2

sp
e

e
d

u
p

 i
n

 l
a

te
n

c
y
 (
s l
a
te
n
c
y
)

percentage of workload (p %)

Speedup in Latency (Slatency)

Sl_0.25 Sl_0.50 Sl_1.00 Sl_1.25 Sl_1.50 Sl_2.00

s = 2

s = 1.5

s = 1.25

s = 1

s = 0.5

s = 0.25

p = % of workload before the

improvement that will be speeded up.

s = speedup in latency of part of the task

benefiting from improved parallelism

Gustafson’s law can be more useful to real-time

embedded systems because it look more towards

improving the response time of a system.

Glimpse into Next Lecture

Amdahl’s Law Revisited:

The next lecture helps you understand the

prescribed reading, a highly influential

paper, that brings Amdahl’s Law more

accurately into the 21st century.

Applying refinements for the heterogeneous,

multicore era of computing….

FREE Creative Commons License

COUNTRY BOY

Music: https://www.bensound.com

https://www.bensound.com/

Image sources:

Clipart sources – public domain CC0 (http://pixabay.com/)

PxFuel – CC0 (https://www.pxfuel.com/)

FreeSVG – CC0 public dimain images (https://freesvg.org/)

Pixabay

commons.wikimedia.org

Images from flickr

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://pixabay.com/
https://www.pxfuel.com/
https://freesvg.org/
http://commons.wikimedia.org/wiki/File:Lei_de_moore_2006.png

	Slide 1
	Slide 2: Lecture Overview
	Slide 3: Parallel Systems
	Slide 4: Computation Methods
	Slide 5: Mainstream parallel computing
	Slide 6: Large scale parallel computing systems
	Slide 7: Large scale parallel computing systems
	Slide 8: Digital Accelerators: New Practice
	Slide 9: Classic Parallel
	Slide 10: Classic techniques for parallel programming*
	Slide 11: Terms
	Slide 12: Terms (reminders)
	Slide 13: Some terms
	Slide 14
	Slide 15: Partitioned memory
	Slide 16: Interlaced* memory
	Slide 17: Memory Partitioning Terms
	Slide 18: Flynns Taxonomy of Processor Architectures
	Slide 19: Flynn’s taxonomy
	Slide 20: Single Instruction Single Data (SISD)
	Slide 21: Single Instruction Multiple Data (SIMD)
	Slide 22: Single Instruction Multiple Data (SIMD)
	Slide 23: Single Instruction Multiple Data (SIMD) Examples
	Slide 24: Multiple Instruction Single Data (MISD)
	Slide 25: Multiple Instruction Single Data (MISD) Example
	Slide 26: Multiple Instruction Multiple Data (MIMD)
	Slide 27: Multiple Instruction Multiple Data (MIMD)
	Slide 28: Maximum Effective Parallelism
	Slide 29
	Slide 30
	Slide 31: Calculation Example: Maximum Effective Parallelism
	Slide 32: Learning Activity
	Slide 33: Learning Activity Answer
	Slide 34: Multi processors and sequential setup time
	Slide 35: Parallel Efficiency (Epar)
	Slide 36: Parallel Efficiency (Epar)
	Slide 37: Gustafson’s Law *
	Slide 38: Gustafson’s Law
	Slide 39
	Slide 40
	Slide 41

