
Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Planned as short recorded lecture

b
e

n
c
h

m
a

rk
in

g

http://creativecommons.org/licenses/by-sa/4.0/

 Performance benchmarking

 Metrics of Performance

 Average Cycles Per Instruction (ACPI)

 Cost vs. Performance

 SWAP

 Profiling code (Reading: Valgrind)

 “Don’t loose sight of the
forest for the trees…”

 Generally, the main
objective is to make the
system faster, use less
power, use less resources…

 Most code doesn’t need to
be parallel.

 Important questions are…

 What can be benchmarked? For DSP and HPC…
 Compiler

 Converts High Level Language to Assembly language thus we
benchmark compiler efficiency, such as how efficient is the
generated assembly code?

 The Processor
 Code in hand-crafted/inspected assembly (to make

comparisons fair)

 Operating System
 Interrupt latencies, overhead of operating system calls, limits

on devices, kernel size, availability of services and facilities
such as support for virtual memory and paged memory.

 Platform
 Scalability of memory. Peripheral limits. Interfaces supported.

Power use. Power saving features. OS’s supported.

 Applications (e.g. representative operations for certain
application domains – think ‘DWARFS’ as in Berkeley paper)

 For DSP/HPEC systems we typically
benchmark:

Cycle count

Data and Program memory usage

Execution time

Power consumption (has recently become a
common thing to report on)

Benchmarking Techniques
EEE4120F

 Application
 Operations per second (OPS)

 Programming language
 Expressiveness*
 Code density

 Processing system
 MIPS: Million Instructions Per Second

GIPS: Giga (i.e. 109) IPS
 MFLOPS: Million FLoating point OPerations per Second

GFLOPS: Giga (109) FLOPS
TFLOPS: Terra (1012) FLOPS

 Datapath
 MBps: Megabytes per second or GBps

 Function unit / processor hardware
 Cycles per second (CPS) (based on clock rate)

* Felleisen, M., 1991. On the expressive power of programming languages.Science of computer programming, 17(1-3), pp.35-75.

Aspect of

processing rated

Instruction

Count (IC)

Cycles Per

Instruction (CPI)

Clock

Program Size

Computer

Instruction Set *

Organization

Technology

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

* Some instructions may of course take multiple cycles … see next slides for ACPI

Hint: Sorry to say, but something like this is hard to resist in setting test questions!

Property of system used to rating aspect on left

Note that this is only a few examples of aspects that may want to be rated in regards to what performance a CPU

achieves. And there are also many more properties that may be used in doing this rating accurately (e.g. number

registers may impact program size).

CPU time = CycleTime * CPIi * Ii
i = 1

n

ACPI = CPIi * Fi where Fi = Ii
i = 1

n

Instruction Count

“Instruction Frequency” (Fi) (how often particular instruction is invoked)

CPI = Cycles / Instruction Count

= (CPU Time * Clock Rate) / Instruction Count

 Average Cycles Per Instruction (ACPI)

i.e. all instructions I1 to In
where CPIi is the cycles

needed to complete

instruction Ii

(You can read more on https://en.wikipedia.org/wiki/Cycles_per_instruction, but only the basics of this slide is examinable.)

https://en.wikipedia.org/wiki/Cycles_per_instruction

Operation Frequency

(Fi)

CPIi CPIi * Fi Time %

Store 10% 2 0.2 13%

Load 20% 2 0.4 27%

Branch 20% 2 0.4 27%

ALU 50% 1 0.5 33%

ACPI 100% 1.5 100%

 Arithmetic mean (weighted * arithmetic mean) tracks
execution time (n = number runs):
 (Ti)/n or (Wi*Ti)

 Harmonic mean (weighted harmonic mean) of rates (e.g., R
= MFLOPS) tracks execution time:
 n/ (1/Ri) or n/ (Wi/Ri)

 Normalized execution time useful for scaling performance
 e.g. X times faster than a Pentium4
 Arithmetic mean impacted by choice of reference machine (e.g.

MIPS-1 processor)

 Use the geometric mean for comparison:
 (Ti)^1/n
 Independent of chosen machine…
 but not good metric for total execution time

* Weighting assigns particular value (or priority of importance to certain runs)

Ti = time of run i

 Recurring Costs
Component Costs
Direct Costs, recurring costs: labor,

purchasing, warranty, scraping

 Non-Recurring Costs or Gross Margin
R&D, equipment maintenance, machine and

test equipment rentals, marketing, sales,
financing cost, pretax profits, taxes, etc. etc.

 Average Discount to get List Price
Allowing for volume discounts and/or retailer

markup

Benchmarking between platforms and
implementations can also be in terms of:

Size – footprint/size the circuit or
product takes up

Weight – how heavy product is
(also concerns for the connectedness/dependencies – like a
friend who brings tons of baggage on the hiking trip and you
end up having to carry it) … And

Power – how much power the product uses,
which implies its level of mobility and
cost in keeping it running, etc.

tiny

very beeg

EEE4120F HPES

 Code profiling or
Software profiling or

Program profiling =
 A process of dynamic program analysis (rather

than ‘static code analysis’*) that investigates the
program’s behavior by gathering data related to its
execution (e.g. stack use, O/S calls, etc.) while the
program executes.

 The purpose:
 Usually profiling is done to analysis which sections

of a program to optimize, in order to increase its
overall speed, decrease its memory requirement,
decrease its power consumption … or a optimize
around a combination of these aspects.

* static code analysis is a code quality inspection and bug finding method. Typically done as a manual code reviews,

not running the code but reading over the code.

 Better understanding how your
program runs on the architecture

 Reduced hardware & maintenance cost

 Learn how to be a better coder

 Develop better programs

 80/20 rule in efficient code development

80% of runtime uses only 20% of the code

Prescribed: read

on your own

 Pre-optimization might be a costly
waste of time (WoT)

 Optimizing the 80% of the code that runs
20% of the time may be a WoT

 Not adequately understanding the
architecture or application workload

 Over optimizing code (e.g. making 4ms into 1ms
when you don’t need less than 5ms)

 Can overcomplicate code

 Not understanding the bottlenecks

Prescribed: read

on your own

 Typical bottlenecks

CPU

Memory

Disk

Lock contention (processes flighting over devices)

Network

External resources / IO

Databases access, etc…

Prescribed: read

on your own

 top, htop (useful for threaded apps)
 strace

 Intercepts and records system calls, which are called by a
process and the signals which are received by a process

 vmstat (virtual memory statistics)
 reports info on processes, memory, paging, IO blocks, traps,

disks and CPU activity

 dstat (enhancement of vmstat)
 View (or report for a period) all of your system resources,

you can e.g. compare disk usage in combination with
interrupts from your IDE controller, or compare the network
bandwidth numbers directly with the disk throughput. *

 time (very simple but useful sanity check!)
 When command finishes, prints info on timing

statistics about the program: (i) elapsed real time
between invocation and termination, (ii) the user
CPU time, and (iii) the system CPU time.

* May need to install, not always standard on Linux. Reference and further info at: https://linux.die.net/man/1/dstat

If you have not tried

time already, you are

seriously missing out…

Quick! Find a Linux

computer and try it out!

Prescribed: read

on your own

https://linux.die.net/man/1/dstat

 Valgrind: an instrumentation framework
for building dynamic analysis tools.

 There are Valgrind tools that can
automatically detect many memory
management and threading bugs, and to
profile your programs in detail.

 Can also use Valgrind to build new
dynamic analysis / code profiling tools.

 The Valgrind distribution includes six production-quality tools:
 memory error detector
 2x thread error detectors
 cache and branch-prediction profiler
 call-graph generator
 branch-prediction profiler
 heap profiler

https://valgrind.org/Find out more and possibly try it out by visiting:

Reading task:

read ‘About’ page for Valgrind (very useful): https://valgrind.org/info/about.html

https://valgrind.org/
https://valgrind.org/info/about.html

 Prac1 is not just about testing

 Why correlation is used in the intro:
The purpose here is that for later pracs, or parts

of the project, you may want to use correlation
to compare the results of different
implementations (i.e. to compare a dodgy
prototype to a trusted ‘golden measure’, using
e.g. Julia, OCTAVE or MATLAB to do correlations
and other stats to check your prototype)

 Using Latex… I suggest either
TexStudio : https://www.texstudio.org/

Overleaf : https://www.overleaf.com/

Next lecture will say a bit more about prac reports, planning project report etc.

https://www.texstudio.org/
https://www.overleaf.com/

closing

remarks & reminders…

Image sources:

Wikipedia (open commons)

http://www.flickr.com

http://pixabay.com/

Forrest of trees: Wikipedia (open commons)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

	Slide 1
	Slide 2: Outline for Lecture
	Slide 3: Reminder: Performance Benchmarking
	Slide 4: Benchmarking: what to test
	Slide 5: Benchmarking: what is usually measured
	Slide 6: Benchmarking Techniques
	Slide 7: Metrics of Performance
	Slide 8: Aspects of CPU Performance
	Slide 9: Average Cycles Per Instruction: processors with varying clocks per instruction
	Slide 10: Example: Calculating ACPI
	Slide 11: Summarizing Performance
	Slide 12: Cost/Performance: The Relationship of Cost to Price?
	Slide 13: Remember SWAP
	Slide 14: Profiling Code
	Slide 15: Profiling
	Slide 16: Reasons for profiling code
	Slide 17: Profiling pitfalls
	Slide 18: Common software bottlenecks
	Slide 19: Command-line tools for simple profiling on Linux
	Slide 20: Valgrind : open-source profiler
	Slide 21: Prac 1 - reasoning
	Slide 22
	Slide 23
	Slide 24

