
Lecturer:

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Planned as short recorded lecture

http://creativecommons.org/licenses/by-sa/4.0/

 Towards performance benchmarking

 Simple benchmarking techniques

EEE4120F HPES

 “Don’t loose sight of the
forest for the trees…”

 Generally, the main
objective is to make the
system faster, use less
power, use less resources…

 Most code doesn’t need to
be parallel.

 Important questions are…

 Should you bother to design a parallel
algorithm?

 Is your parallel solution better than a
simpler approach, especially if that
approach is easier to read and share?

 Major telling factor is:

Real-time performance measure

Or “wall clock time”

 Process of measuring performance of a digital system
 A program (or systematic approach) that Quantitatively

evaluates performance, cost and computer hardware
and software resources (among other things) of a
computing solution

 Benchmark suites – sets of benchmark programs
designed to get a comprehensive view of the
performance of a computer system for executing a
variety of representative processing operations.

 Suitable benchmark
 A meaningful representation of what the system can do
 Helps select of an effective system
 Indicates a measure of what one system can do compared

to other options

MIPS

 Generally the most accurate: use a built-
in timer, which is directly related to real
time (e.g., if the timer measures 1s, then
1s elapsed in the real world)

 Technique:

unsigned long long start; // store start time

unsigned long long end; // store end time

start = read_the_timer(); // start timer / tic

DO PROCESSNG

end = read_the_timer(); // end timer / toc

.. Output the time measurement (end-start), or save

it to an array if printing will interfere with the

times. Note: to avoid overflow, used unsigned vars.

See file:

Cycle.h

Cycles.c

 gettimeofday

Very portable, part of the StdC library

Should be available on any Linux system

Returns time in seconds and
microseconds since midnight 1 Jan 1970

Uses struct timeval comprising

tv_sec : number of seconds

tv_usec : number of microseconds*

Converting to microseconds will use huge
numbers, rather work on differences

* Word of caution: some implementations always return 0 for the usec field!!

On Cygwin, the resolution is only in milliseconds, so tv_usec in multiples of 1000.

Not provided in DevC++.

gettimeofday example
#include <stdio.h>

#include <sys/time.h>

#include <time.h>

struct timeval start_time, end_time; // variables to hold start and end time

int main() {

int tot_usecs;

int i,j,sum=0;

gettimeofday(&start_time, (struct timezone*)0); // starting timestamp

/* do some work */

for (i=0; i<10000; i++)

for (j=0; j<i; j++) sum += i*j;

gettimeofday(&end_time, (struct timezone*)0); // ending timestamp

tot_usecs = (end_time.tv_sec-start_time.tv_sec) * 1000000 +

(end_time.tv_usec-start_time.tv_usec);

printf("Total time: %d usec.\n", tot_usecs);

}

See timing.c code file

 It can provide a false impression of how effective your
solution is – at least doesn’t give a ‘full picture’ …
 Typically do tests after the system has ‘warmed up’* (cache

loaded) by running the same data multiple times
 May show the solution is quicker… but at what costs? e.g.:

Speed improved but accuracy sacrificed?
Development effort vs. execution speed improvement?
Resource costs for upgrading vs. costs saved by remaining

with the old version?
Power usage? Does the new solution need more power

(per execution, also on average including idle time)
Maintainability? (e.g. is the new version more complex?)
Environment impact? (Does the upgrade result in waste

that could be environmentally detrimental)
* But this can be a very false impression too, e.g. cache etc pre-set with needed data.

 What can be benchmarked? For DSP and HPC…
 Compiler

 Converts High Level Language to Assembly language thus we
benchmark compiler efficiency, such as how efficient is the
generated assembly code?

 The Processor
 Code in hand-crafted/inspected assembly (to make

comparisons fair)

 Operating System
 Interrupt latencies, overhead of operating system calls, limits

on devices, kernel size, availability of services and facilities
such as support for virtual memory and paged memory.

 Platform
 Scalability of memory. Peripheral limits. Interfaces supported.

Power use. Power saving features. OS’s supported.

 Applications (e.g. representative operations for certain
application domains – think ‘DWARFS’ as in Berkeley paper)

 We get more into depth of

Metrics for performance

Some specialized concepts (e.g. the ‘ACPI’
measure for a processor core)

Methods to summarising performance
(commonly seen in performance reports)

SWAP

Profiling code designs*

* Only a brief flavour of profiling techniques, would need to be a course on its own to do properly.

closing

remarks & reminders…

No quiz next week

Read About page for Valgrind (very useful): https://valgrind.org/info/about.html

Have a look at:

Valgrind About Page

https://valgrind.org/info/about.html

Image sources:

Wikipedia (open commons)

https://www.vectorportal.com

http://www.flickr.com

http://pixabay.com/

Forrest of trees: Wikipedia (open commons)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

	Slide 1
	Slide 2: Outline for Lecture
	Slide 3: Performance Benchmarking
	Slide 4: Performance Benchmarking
	Slide 5: Important questions
	Slide 6: Benchmarking
	Slide 7: Wall clock time
	Slide 8: StdC: gettimeofday
	Slide 9: gettimeofday example
	Slide 10: What is wrong about using only wall clock time?
	Slide 11: Benchmarking: what to test
	Slide 12: Next Lecture …
	Slide 13
	Slide 14
	Slide 15
	Slide 16

