
Presented by

Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Some slides

have voice

annotations

http://creativecommons.org/licenses/by-sa/4.0/

Term 1: Thursday 3pm - 5pm (Blue Lab)
Tuesday 11am – 12pm (catchup/additional slot)

Term 2: same (presumably)

EEE4120F Lab Sessions / Bookings?

Note: there was availability of Monday 11am also (wanted Mon or Tue option, not both)

 Why OpenCL

 Brief overview of OpenCL

Abstractions & platform model

OpenCL Scenario

 OpenCL Programming
(Preparation for Prac 2)

Licensing details last slide

See also paper in reading list:

“06502816 - OpenCL Overview, Implementation,

and Performance Comparison.pdf”
(this paper is supplementary reading, not prescribed)

The following slides are based on a presentation

prepared by Dr. Suleyman Demirsoy, DSP Technology

Specialist, Intel Programmable Solutions Group

Note: to save time and avoid boredom,

some of these slides are assigned as:

Prescribed

reading
Supplementary

reading

May come

up in a test

Won’t be

examined

Why OpenCL?
EEE4120F

 Main reason is because there’s massive
Increasing demands for more
functionality and performance

 … and clients also want it soon (i.e.
asap to beat the competition etc).

 But it’s not just that, it’s also to try and
streamline and perhaps even mitigate
the complexity of modern designs.

 It is also a response for needs to cater for

BIG DATA

HIGHLY INTEGRATED SYSTEMS

SPECIAL-PURPOSE ACCELERATORS

 OpenCL is not (currently)
meant for creating most of
the application code.

 It is designed around
developing accelerated
kernels that are highly parallel
or exercise the specialized
hardware (not necessarily an
application accelerator)

 The diagram on right explains
where OpenCL fits in (it is the
same as to where Digital
Accelerators generally fit in to
a computer system)

Application Code

Reused Libraries

mainly ‘glue code’ & GUI / IO

Host Computer

lots of data

Application Accelerator

Active kernel Inactive kernels

 Not all applications
scale well linearly

 Not all apps load
balance across all
cores equally

POORLY BALANCED

LIMITED SCALABILITY

 Heterogeneous Computing Systems as a
potential solution to the problems of
limited scalability and balancing

 Distribute your different processing needs
among processing cores better suited
to the particular types of processing.

Definition:

Heterogeneous computing refers to systems that use more than one kind

of processor. These are systems that gain performance not just by adding

the same type of processors, but by adding dissimilar processors, usually

incorporating specialized processing capabilities to handle particular tasks

(or entire applications).

workload

Essentially like matching the

equipment with the task

 Multi-core, general purpose, central
processing units (CPUs)
 Include multiple execution units ("cores")

on the same chip

 Digital Signal Processing (DSPs) processors
 Optimized for the operational needs of digital

signal processing

 Graphics Processing units (GPUs)
 Heavily optimized for graphics processing

 Field Programmable Gate Arrays (FPGAs)
 Custom architectures for each problem solved
 SoC FPGAs combine CPU+FPGA in single device

 Various applications becoming bottlenecked
by scalable performance requirements

e.g. Object detection and recognition, image
tracking and processing, cryptography, cloud,
search engines, deep packet inspection, etc…

 Overloading CPUs capabilities

Frequencies capped

Processors keep adding additional cores

Need to coordinate all the cores and manage data

Source: points based on course notes by B. Subramanian, Department of Computer Science, University of Texas, Austin

 Product life cycles are long
 GPUs lifespan is short (which goes with the

problem of getting replacements of the same
model in the future)

 Require re-optimization and regression testing
between generations

 (not limited to accelerators/GPUs!! It could be
some cryptic control code for a robot, e.g. multiple
processors of an integrated device)

 Maintaining coherency throughout scalable
system

 Support agreement for GPUs costly
 Power dissipation of CPUs and GPUs limits

system size

Source: points based on course notes by B. Subramanian, Department of Computer Science, University of Texas, Austin

OpenCL – abstractions

and platform model
EEE4120F

 Open standard for parallel programming
across heterogeneous devices

 Devices can consist of CPUs, GPUs,
embedded processors etc. – uses all the
processing resources available

 Includes a language based on C99 for
writing kernels and API used to define and
control the devices

 Parallel computing (or hardware
acceleration*) through task-based and
data-based parallelism

* Which is more generic e.g. if the hardware is faster but not necessarily more parallel

 Use all computational resources of the system
via a consistent programming language

 Greater platform independence

 Provides both a data and task parallel
computational model

 A programming model which abstracts the
specifics of the underlying hardware

 Much flexibility in specifying accuracy of
floating-point computations

 Supports desktop, server, mobile, custom, etc.

 Host connected to one
or more OpenCL
devices

 Device consists of one
or more cores

 Execution per
processor may be
SIMD or SPMD*

 Contexts group
together devices and
enable inter-device
communication

C
o

n
te

x
t Device A - CPU

Device B - GPU

Device C - DSP

H
O

S
T

C
o

n
te

x
t

This could simply be your

workstation PC or a

network server

Slide adapted from course notes by B. Subramanian, Department of Computer Science, University of Texas, Austin

* Single Program, Multiple Data - where cores are running the same program but not necessarily the same instructions at the same time

OpenCL Memory model

 Private memory:
available per work item

 Local memory:
shared in workgroup

 NB: No synchronization
between workgroups

 Synchronization possible
between work items in a
common workgroup

 Global/constant memory
accessible by any work-
items (no guarantee to
be synchronized)

 Host memory: access
through the CPU

 Memory management is
explicit…

 Data moved from:
host->global->local and back

PICe (usually)

Prescribed

reading

OpenCL Memory model

 Private memory:
available per work item

 Local memory:
shared in workgroup

 NB: No synchronization
between workgroups

 Synchronization possible
between work items in a
common workgroup

 Global/constant memory
accessible by any work-
items (no guarantee to
be synchronized)

 Host memory: access
through the CPU

 Memory management is
explicit…

 Data moved from:
host->global->local and back

PICe (usually)

Prescribed

reading

OpenCL Memory model

 Private memory:
available per work item

 Local memory:
shared in workgroup

 NB: No synchronization
between workgroups

 Synchronization possible
between work items in a
common workgroup

 Global/constant memory
accessible by any work-
items (no guarantee to
be synchronized)

 Host memory: access
through the CPU

 Memory management is
explicit…

 Data moved from:
host->global->local and back

PICe (usually)

Prescribed

reading

OpenCL Memory model

 Private memory:
available per work item

 Local memory:
shared in workgroup

 NB: No synchronization
between workgroups

 Synchronization possible
between work items in a
common workgroup

 Global/constant memory
accessible by any work-
items (no guarantee to
be synchronized)

 Host memory: access
through the CPU

 Memory management is
explicit…

 Data moved from:
host->global->local and back

PICe (usually)

Prescribed

reading

OpenCL Memory model

 Private memory:
available per work item

 Local memory:
shared in workgroup

 NB: No synchronization
between workgroups

 Synchronization possible
between work items in a
common workgroup

 Global/constant memory
accessible by any work-
items (no guarantee to
be synchronized)

 Host memory: access
through the CPU

 Memory management is
explicit…

 Data moved from:
host->global->local and back

PICe (usually)

Prescribed

reading

OpenCL Memory model

 Private memory:
available per work item

 Local memory:
shared in workgroup

 NB: No synchronization
between workgroups

 Synchronization possible
between work items in a
common workgroup

 Global/constant memory
accessible by any work-
items (no guarantee to
be synchronized)

 Host memory: access
through the CPU

 Memory management is
explicit…

 Data moved from:
host->global->local and back

PICe (usually)

Prescribed

reading

 HLS (high level synthesis) phase leverages the OpenCL
compiler

 You can (if you want to) still specify and adjust:
 High performance datapaths
 Automatic pipelining
 New QoR enhancements as they are developed
 DSPB back-end optimizations
 Memory optimizations

 In addition to:
 Control constraints (latency, fmax, area, …)
 Control interfaces (stall, valid, Avalon-MM, …)
 Control architecture (memory configuration, scheduling, …)
 IP core verification flows

Code.c
IP optimizations executables

* JIT = Just In Time

OpenCL Coding
EEE4120F

 Kernel
 basic unit of execution – data parallel

 Program
 collection of kernels and related functions

 Kernels executed across a collection of
work-items
 one work-item per computation

 Work-items
 Independent processing tasks; grouped

into workgroups

 Workgroups
 Work-items that executed together on one device

 Workgroups are executed independently can take place
simultaneously or via specific schedule

 Applications structuring
 Queue kernel instances for execution in-order, but they may

be executed in-order or out-of-order

Work items and OpenCL
memory model

Prescribed

reading

 Devices: multiple cores on CPU/GPU together taken as a
single device
 Kernels executed across all cores in a data-parallel manner

 Contexts: Enable sharing between different devices
 Devices must be within the same context to be able to share

 Queues: used for submitting work, one per device
 Buffers: simple chunks of memory like arrays; read-write

access
 Images: 2D/3D data structures

 Access using read_image(), write_image()
 Either read or write within a kernel, but not both

Prescribed

reading

 Declared with a __kernel qualifier
 Encapsulate a kernel function
 The kernel objects created after the

executable is built
 Execution

 Set the kernel arguments
 Enqueue the kernel

 Kernels are executed asynchronously
 Events used to track the execution status

 Used for synchronizing execution of two kernels
 clWaitForEvents(), clEnqueueMarker() etc.

 Encapsulate
 A program source/binary
 List of devices and latest successfully built

executable for each device
 List of kernel objects

 Kernel source specified as a string can be
provided and compiled at runtime using
clCreateProgramWithSource() – platform
independence

 Overhead – compiling programs can be
expensive
 OpenCL allows for reusing precompiled binaries

A view on how some of the objects fit in to the execution model

 Derived from ISO C99
 Non standard headers, function pointers, recursion, variable

length arrays, bit fields
 Added features: work-items, workgroups, vector types,

synchronization
 Address space qualifiers
 Optimized image access
 Built-in functions specific to OpenCL
 Data-types

 Char, uchar, short, ushort, int, uint, long, ulong
 Bool, intptr_t, ptrdiff_t, size_t, uintptr_t, half
 Image2d_t, image3d_t, sampler_t
 Vector types – portable, varying length (2,4,8,16), endian safe
 Char2,ushort4,int8,float16,double2 etc.

C99 (previously ‘C9X’) is an informal name for ISO/IEC
9899:1999, a past version of the C programming
language standard. It extends the previous version (C90)
with new features for the language and the standard
library. Helps implementations make better use of
available computer hardware and compiler technology.
Source & more info: https://en.wikipedia.org/wiki/C99

(can skip this slide, may be useful to refer to when writing a OpenCL program)

Supplementary

reading

https://en.wikipedia.org/wiki/C89_(C_version)
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C99

OpenCL Programming
EEE4120F

How to code an OpenCL kernel…

G
P

U
/C

P
U

b
o
tt
le

n
e
c
k

 Address spaces
Kernel pointer arguments must use global,

local or constant

Default for local variables is private

Image2d_t and image3d_t are always in
global address space

Global variables must be in constant
address space

NB: Casting between different address
spaces undefined

(skip in lecture, may be useful to refer to when writing a OpenCL program)

Supplementary

reading

Similar to

vertex buffers

and textures

Similar to

vertex and

fragment shaders

Similar to

depth and

frame buffers

… comparing to GPU / CUDA type approach …

Prescribed

reading

(1) Set up & transfer

buffers to GPU

(2) Invoke the kernel (3) Transfer output

buffer to CPU

 Work-item and workgroup functions
 get_work_dim() : number dimensions of tasks,

returns 1 for a queue added with clEnqueueTask
 get_global_size() : work-item ID
 get_group_id(), get_local_id() :

 Vector operations and components are pre-defined
 Kernel functions

 get_global_id() – gets the work item ID

 Conversions
 Explicit – convert_destType<_sat><_roundingMode>
 Reinterpret – as_destType
 Scalar and pointer conversions follow C99 rules
 No implicit conversions/casts for vector typs

(skip in lecture, may be useful to refer to when writing a OpenCL program)

Prescribed

reading

(w
o

n
’t
 b

e
 a

s
k
e

d

a
b

o
u

t
in

 t
e

s
ts

)

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clEnqueueTask.html

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clEnqueueTask.html

1. Get platform ID
2. Get device ID
3. Create Context
4. Load kernel .cl code file(s)
5. Create OpenCL program (may have multiple kernels, provide list of

kernel names)
6. Build program
7. Compile kernels function (creates a kernel from one program

function)
8. Create command queue to the target device
9. Create memory buffer(s) that both host and target can access
10. Set up kernel memory arguments (to send to kernel)
11. Enqueue kernel, added to list of kernels to deploy on target
12. Get data from output buffer
13. Do any checks / further processing on output obtained
14. Wait for kernel queue to finish

 Wait for the OpenCL system to finish performing the commands in the
queue and the release the kernel, memory, queues, program and context.

/** This Kernel function has one buffer that is defined as a

float array. It also has a constant input n. */

__kernel void KernelFunctionName (

__global float* x, // float array to process

const unsigned int n) // number of elements in x

{

// get the core number and

const int i = get_global_id(0); // number of this work item

const int g = get_group_id(0); // group that work item is in

// if the x array is long enough, just put this item’s group

// number into the array at index of work item number

if (i<n) x[i] = g;

}

Put this in a file called e.g. Kernel.cl

 Generally, it is useful to have an
equivalent implementation, which gives
an accurate result, for testing the
kernel function (e.g. ‘Golden Measure’
written in Python).

• Prac2.1 will take you through the process

of setting up an OpenCL kernel

Thanks to Chris Hill for EEE4120F OpenCL Prac2 updates and refinements.

• Each student should run through the prac.

• The bluelab is planned to be set up for remote

access, the machines would need to be shared

via ssh remote login.

• The machines each have a small but fast SSD

(so keep a separate main copy of your files)

• A brief view of Prac2.1 to be given in the lecture…

• E.g. comparing results obtained from the (e.g.) Python

sequential implementation to those generated by the

parallel kernel version.

 R Wright, N Haemel and G Sellers
 OpenGL SuperBible, 6 th ed
 Addison-Wesley, 2014, ISBN 978-0-321-90294-8

 A Munshi, B R Gaster, T G Mattson, J Fung and
D Ginsburg
 OpenCL Programming Guide
 Addison-Wesley, 2012, ISBN 978-0-321-74964-2

 Mac Developer Library
 OpenCL Hello World Example

 Altera
 OpenCL SDK for FPGA

Supplementary

reading

closing

remarks & reminders…

Coding Kernels:
OpenCL, C++ → HDL
EEE4120F

OpenCL

 Targets CPU, GPU and
FPGAs

 Target user is Software
developer

 Implements FPGA in
software development
flow

 Performance is
determined by
resources allocated

 Host Required

C++ → HDL translators

 Targets FPGA

 Target user is FPGA
designer

 Implements FGPA in
traditional FPGA
development flow

 Performance is defined
and amount of resource
to achieve is reported

 Host not required

(skip in lecture, may be useful to refer to when writing a OpenCL program)

Supplementary

reading

 Thread
 Thread-block
 Global memory
 Constant memory
 Shared memory
 Local memory
 __global__ function
 __device__ function
 __constant__ variable
 __device__ variable
 __shared__ variable

 Work-item
 Work-group
 Global memory
 Constant memory
 Local memory
 Private memory
 __kernel function
 no qualification needed
 __constant variable
 __global variable
 __local variable

CUDA OpenCL

(skip in lecture, may be useful to refer to when writing a OpenCL program)

Supplementary

reading

Image sources:

Wikipedia (open commons) commons.wikimedia.org

flickr.com

Gadgets, Block diagrams for Altera OpenCL models – fair usage

public domain CC0 (http://pixabay.com/)

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particularly want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

http://commons.wikimedia.org/wiki/File:Lei_de_moore_2006.png
http://pixabay.com/

	Slide 1
	Slide 2
	Slide 3: OpenCL Lecture Overview
	Slide 4
	Slide 5: Why OpenCL?
	Slide 6: Why OpenCL…
	Slide 7: OpenCL – for acceleration & other kernels
	Slide 8: OpenCL – for acceleration & other kernels
	Slide 9: Why OpenCL…
	Slide 10: Why OpenCL…
	Slide 11: Examples of devices form which heterogeneous computing systems are composed
	Slide 12: Challenges to developers
	Slide 13: Challenges to developers (cont.)
	Slide 14: OpenCL – abstractions and platform model
	Slide 15: Overview of OpenCL
	Slide 16: Purposes of OpenCL
	Slide 17: The OpenCL Platform Model
	Slide 18: OpenCL Memory model
	Slide 19: OpenCL Memory model
	Slide 20: OpenCL Memory model
	Slide 21: OpenCL Memory model
	Slide 22: OpenCL Memory model
	Slide 23: OpenCL Memory model
	Slide 24: Advantages of the OpenCL JIT* Compiler
	Slide 25: OpenCL Coding
	Slide 26: OpenCL Programming Model
	Slide 27: OpenCL Objects (work task elements)
	Slide 28: OpenCL Kernel Objects
	Slide 29: OpenCL Program Objects
	Slide 30: OpenCL Overall Pipeline
	Slide 31: OpenCL C Language
	Slide 32: OpenCL Programming
	Slide 33: OpenCL C Language: dealing with address spaces
	Slide 34: Conceptual view of how an OpenCL kernel fits in
	Slide 35: OpenCL C Language
	Slide 36: Initialisation – on CPU side
	Slide 37: OpenCL Kernel .cl Code Example
	Slide 38: Think of method to check kernel
	Slide 39
	Slide 40: Info & Procedure for Prac2.1
	Slide 41: Run the OpenCL version
	Slide 42: Compare CPU & GPU kernel results
	Slide 43: Further Reading
	Slide 44
	Slide 45: Coding Kernels: OpenCL, C++ HDL
	Slide 46: Advantages of OpenCL vs C++
	Slide 47: CUDA vs OpenCL correspondence
	Slide 48
	Slide 49

