
Lecturer:
Simon Winberg

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Notes and
explanations in the
slide comments

The comments provide annotations to elaborate the
slides, and can be used as study notes also.

You can use View -> Notes Page to view these
comments below the slide for each slide. To generate
pdf notes with slides, you just go to File -> Print and
then “Change Full Page Slides” to “Notes Pages”.

Comments for this slide1:
Hi there. In this lecture we will be getting into a few
essential terms that we will use frequently in pracs and
reviewing performance, and we get into the concept of
Amdahl's law.

1

 Terms
 Validation vs. Verification
 Commonly used verification methods
 Amdahl’s Law
 Prac prep
 Dealing with reading assignments
 Reminder: Quiz#1 next Tuesday!

Here's the outline, let's move on.

2

Let’s get in to essential Terms… and leave the more cool
topics and thinking about fancy processors for a
moment.

3

 Golden measure:
A (usually) sequential solution that you

develop as the ‘yard stick’
A solution that may run slowly, isn’t

optimized, but you know it gives (numerically
speaking) excellent results

E.g., a solution written in OCTAVE or MatLab,
verify it is correct using graphs, inspecting
values, checking by hand with calculator, etc.

Discussed a bit more later…

Don’t confuse the term Golden Measure with Golden Ratio which is
solving for g in g^2 = g + 1 ... g = (1+sqrt(5))/2 = 1.61803398875.

The term of "Golden Measure" will be used often in this
course. It sounds nice and shiny, a good start. But actually,
the term Golden Measure is used in computing more to
refer to a solution that produces accurate results but
doesn't necessarily run fast or efficiently. It is commonly
used as a baseline for comparison to or between other
computing solutions that solve the same task. So Golden
here is really an adjective meaning accurate ... ironically
these Golden Measures are usually way much cheaper to
construct than the, probably less perfectly correct,
optimized parallel solutions being compared against.

Please don’t confuse the term Golden Measure with Golden Ratio which is solving for g in
g^2 = g + 1 ... g = (1+sqrt(5))/2 = 1.61803398875. That 1.618 is the golden ratio
which is perhaps useful for some engineering work.

While on the topic of golden radio, if you excuse getting side-tracked, you might like
to try the Fibonacci golden ratio algorithm… which could be done as a YODA topic ;)

Golden measure itself is not necessarily a universally defined and used term for a yardstick
of computation, but the term does come up in some texts and academic papers.

4

 Sequential / Serial (serial.c)
A non-parallelized code solution

 Generally, you can call your code
solutions parallel.c (or para1.c, para2.c
if you have multiple versions)

 You can also include some test data (if
it isn’t too big, <1Mb), e.g. gold.csv or
serial.csv, and paral1.csv

In some of the pracs you will be given a starting point of
non-parallel code, usually called serial dot C (sorry, I
was being funny, usually called “serial.c” if one is
typing). Then you can call you parallelized code
something like “parallel.C” to make it easy for the
marker to find.

You should also include some test data files.

An example file name is given here, in this slide.

If you are given a big file as part of the prac assignment
please do not submit that file as we would have it
already.

5

 Speed-up = Tp1 /Tp2

Where Tp1 = Run-time of original (or
non-optimized) program

 Tp2 = Run-time of optimised program
 Best practice for measuring speedup:
Run the program more than one,

discarding the first result (where the cache,
etc. is getting ‘warmed up’)

To be precise should indicate results from
when system wasn’t ‘warmed up’*

* (which can be simulated by running a whole lot of other things like CounterStrike, Half-Life, maybe some
Solitare* for good measure -- but more seriously you could write your own ‘cache cleaning program’)

The concept of speed-up is a measure of how much faster one program, call it
P1, is compared to another, call it P2. The equation is, obviously, just time of
P1 over time of P2. Usually the numerator, i.e. P1, is the non-optimized
program or Golden Measure, and P2 is the optimized program. So if Golden
Measure P1 takes 2 seconds and P2 takes 1 second, what is the speed up? It is
2 over 1, i.e. 2. Speed up has no units, although if you really need a unit you
could use times. My P2 has a 2 Times speedup.

(can skip:)
As per definition on Wikipedia:
In computer architecture, speedup is a number that measures the relative performance of two systems processing
the same problem. More technically, it is the improvement in speed of execution of a task executed on two similar
architectures with different resources. The notion of speedup was established by Amdahl's law, which was
particularly focused on parallel processing. However, speedup can be used more generally to show the effect on
performance after any resource enhancement.

source: https://en.wikipedia.org/wiki/Speedup

Discussion about the definition of speed-up:

Speedup is a number for expressing the relative performance of two systems
processing the same problem or completing the same processing solution
(either ‘same problem’ or ‘same processing solution’ would be considered
correct, although generally, and I know it’s a somewhat philosophical view, it
would be better saying the same problem or solution, for which we want to get
similarly correct results out, but we don’t mind what the specific processing is
as long as it gives correct (or sufficiently accurate) solutions; for example
sequential and parallel processing implementations that solve a given problem
would likely be different, thus it is more correct to “say solving the same
problem” as apposed to “doing the same processing”.

6

This is a typical speed up graph, which one sees in many
computing type papers. The vertical axis is Speedup. The
horizontal axis is often number of cores. But! The
horizontal is actually, more generally, a metric that rates
the characteristic, usually hardware size, of the
architectures you are contrasting. So you could perhaps
have an 8 bit Pick architecture on the left, and a 64 bit I
7 on the right and compare how quickly they do a one
oh two four floating point F F Tee. You would probably
find that the 64 bit gives a hefty speedup.

7

 Verification
 Validation
 Testing
 Correctness proof

These terms are not
merely theoretical terms
to remember, but relate
directly to your project.

Not something done in
the project (but if you
want to, you can
experiment with doing a
correctness proof if you
are keen)

Here are some other important terms.

Actually, these terms that are commonly used in
engineering in relation to product or prototype
development. You should really know what is meant by
Verification, Validation and Testing of a product.

In this course these are used in the Conceptual
Assignment this term and in the YODA project next
term.

The theory of Correctness Proofs is a wonderful thing.
But unfortunately it is not within the scope of this
course. Although, it would certainly make for a good
Masters level course.

8

 Two terms you should already know…
 Verification
 “Are we building the product right?”
 Have we made what we understood we wanted to make?
 Does the product satisfy its specifications?

 Validation
 “Are we building the right product?”
 Does the product satisfy the users’ requirements

 Verification before validation (at least in duress)…

Sommerville, I. Software Engineering. Addison-Wesley, 2000.

While it would be nice to validate (seeing that the users are happy) before
verifying (checking the specs), doing so would mean your final design might
not match the specifications (which could open the door to legal problems).
Obviously this often doesn’t happen because in practice you want to make sure
the client is happy and there might not be time for proper validation.

So, you might be wondering, what is Verification and Validation?

Verification, which you might have heard in the design course, is
checking: are we building the product, right. Note that it not checking if
we are building the right, product. It is confirming that we are building
the product we said we would build, according to the specifications and
contract with the client. We aren't checking here if the client is delighted
with the product we deliver.

Now Validation, on the other hand is checking if we have built the right
product. Yes, this is where you call the client in. Maybe some of their
employees too. And get them to try the system, if possible, in situ.
Where it would be used. Oh, and don’t forget this would involve some
good coffee and cakes, perhaps taking the happy clients to lunch. Oops,
sorry that went off topic. Basically, validation is checking if user needs
are met not just that agreed specifications are achieved.

(additional point and clarity on specifications for product validation:)
Remember that for industry products, the specifications is usually a document that the client agrees to and signs
off on, it is technically a legally binding contract.
So, if you are thinking short-term bottom line and business survival, then you basically want to ensure you are
getting the design right according to the agreed upon specifications. But perhaps if you are thinking long-term
survival, then you probably want to ensure clients are happy and this may mean a tradeoff between what specs
are satisfied and how satisfied the client is. Usually there is some flexibility that the client may agree to e.g.
modify certain specs in order to get the product working sooner.

9

 The RC engineer (i.e., you) are effectively
designing both custom hardware and custom
software for the RC platform

 Before attempting to make claims about the
validity of your system, it’s usually best practice to
establish your own (or team’s) confidence in what
your system is doing, i.e. be sure that:
 The custom hardware working;
 The software implementation is doing what it was

designed to do; and
 The custom software runs reliably on the custom

hardware.

You might have noticed my additional note in the previous slide about often validation
before verification. Or being nice to the client. However a the RC team. More explicitly, the
Reconfigurable Computing Engineering team, usually wants to do verification before
validation. Such engineers typically build custom hardware and custom software. So, before
making claims about the validity of your entire system it is typically better for the team to do
verification first. For example to confirm that the interfaces are correct, and sub-modules
work as planned. This is to ensure the team is happy with the parts of the system. And that
the parts adhere to specifications. Then only is validation of the system done. In the
validation it might be found that requirements are not met so the team might have to do
some redesign. But this method has advantages. Such as avoiding individual team members
being blamed for not having adhered to specifications.

I like Henry Ford’s quote on teamwork, which is a strong inspiration and motivation for the
importance of teams in development. It goes like this:

“Coming together is a beginning. Keeping together is progress. Working together is
success.”

A good team leader needs to think how to keep the team working well together.

10

 Checking plans, documents, code,
requirements and specifications

 Is everything that you need there?
 Algorithms/functions working properly?
 Done during phase interval (e.g., design =>

implementation)
 Activities:
Review meetings, walkthroughs, inspections
 Informal demonstrations

Focus of
project

Focus of project

The activities of verification include: Review meetings,
walkthroughs, inspections, and Informal
demonstrations. We plan to have some of these in the
YODA project.

11

1. Dual processing, producing two result sets
1. One version using PC & simulation only;
2. Other version including RC platform

2. Assume the PC version is the correct one
(i.e., the gold measure)

3. Correlate the results to establish correlation
coefficients

(complex systems may have many different sets of possibly multidimensional data
that need to be compared)

The correlation coefficients can be used as a kind of
‘confidence factor’

A commonly used verification method in HPES includes…

Dual processing. Which is about developing two different implementations that process the same
result. This term, you might be fascinated to know, actually arises from psychology. In which it refers
to how thought can arise in two different ways. From a conscious process, in which there is a clear
logic towards the result. Or from an unconscious process, in which the process is not necessarily know
and the result seems to just appear. Basically, the dual processing in computing that we use here is
much the same. It still refers to the human though, the engineers building systems. Not to the
machine (we are not thinking about Ais building machines at this point).

Let us consider a scenario of two systems. You put together a golden measure in MATLAB and also
built an HPES system. They both produce the same result. The process of how the golden measure
works, which is put together in MATLAB is quite similar to an unconscious process. We don’t
necessarily know how it got from a short program written in a few minutes to a very accurate result.
Then we have the other process, the HPES system. In which you’re likely worked from the bottom up.
It may have taken a month. Or years to build. You consciously know every little step of the way of
how your solution got from its initial, anguished booting. Through its teething and squeaking stage.
Possible along the way it had to get turned on and off a bit and had other disciplining measure
applied to make it behave. And it finally respond with a result.

So those are two processes. One that was perhaps quick and which you don’t really care much how it
got to the result. And the other. Where you know exactly how it got to the result. And thusly you now
hopefully have a clear understanding of what is meant by dual processing.

To simplifying things down though, one just looks at the results and not thinking so much about the
process. And when it is about comparing results, a good and well-defined way of doing this is the use
of correlation. In Prac 1 we make use of correlation to compare the accuracy of two computing
methods.

12

 Testing of the whole product / system
 Input: checklist of things to test or list of

issues that need to have been
provided/fixed

 Towards end of project
 Activities:
Formal demonstrations
Factory Acceptance Test

Focus of
project

Validation is about testing of the whole product. The
acceptance test is commonly a significant milestone in a
project in which the product is validated to check that it
is meeting the needs of the client, or more specifically
that the system is satisfactorily achieving its purpose.

13

 Testing
 Generally refers to aspects of dynamic validation in which

a program is executed and the results analysed
 Correctness proofs / formal verification
 More a mathematical approach
 Exhaustive test => specification guaranteed correct
 Formal verification of hardware is especially relevant to

RC. Formal methods include:
Model checking / state space exploration
Use of linear temporal logic and computational

tree logic
Mathematical proof (e.g. proof by induction)

Testing usually refers to aspects of dynamic validation,
in which a program is executed and the results analysed.
Acceptance Testing is mainly just a more structured and
comprehensive testing activity.

This should not be confused with correctness proofs or
formal verification. This is a more mathematical
approach. Typically means exhaustive testing to
mathematically (commonly using logic and inference
rules) to prove specifications are guaranteed correct.
One would do this in very high stakes, safety-critical
systems like a rocket guidance control system.

14

Amdahl’s Law
EEE4084F

Speed-up

Number of processors

We have now covered the important essentials of Speed
up, Validation and Verification.

Now for Amdahl …

15

16

 The guy: Gene Amdahl
Was chief architect for IBM's first mainframe

series of computers
Founder of Amdahl Corporation

 Amdahl found stringent restrictions on the
speedup possible for given parallelized
tasks.

 Thee observations packaged as:
Amdahl's Law

The main man here. Gene Amdahl. Was chief architect
for IBM's first mainframe series. Amdahl found stringent
restrictions on the speed-up possible for given
parallelized tasks, and the essential ones are packaged
as Amdahl's Law.

 Be aware that a computer program to run on
a parallel computer * pretty much always
has a part that is sequential, which can run
on only one core, and a part that is parallel,
that can be split between available cores

 But, let’s make things more fun (and hope
you then understand Amdahl’s better) by
proceeding to video linked on next slide.

 Comments on slide 19 elaborates further.

*well, we’re thinking here computers with one or more CPUs for their processing

See comments on slide 19

17

Linux Magazine Video: Understanding Parallel Computing: Amdahl's Law

Amdahl.flv
https://www.youtube.com/watch?v=WdRiZEwBhsM

Watch the video. Even though his T-Shirt logo might be discouraging, his wit and
good explanation makes up for things.

18

 Define f as: fraction of computation that can
be parallelized (ignoring scheduling overhead)

 Then (1 - f) is the fraction that is sequential
 Define n = no. processors for parallel case
 The maximum speed-up achievable is:

1

f
(1 – f) +

n

Speedupparallel =

Should be able to remember this formula for exams

This is the essential Amdahl's law. It works as follows.

You should be aware that a computer program to run on a parallel computer pretty much always has a part that
is sequential, which can run on only one core, and a part that is parallel, that can be split between available
cores.

Yes, you may be aware this is a simplification. You could have a complicated beast of a HPES that has more than
just multiple microprocessor cores, to accelerate tasks.

But put such complicated beasts out of you mind for now. Just think multiple cores. With only one core. The
master core, which is often called C 0. As the core that gets the party started.

We can thus define things as follows:

F is defined as the fraction of computation that can be parallelized.

N is the number of processors for the parallel case.

One minus F is thus the part that is sequential.

Using these parameters Amdahl's law is given by:

One upon the denominator one minus F plus F divided by N.

That is it. You can see it is tightly bound by only the parallelizable portion being able to be speeded up.

Typically, there are two points along the horizontal axis of a speed up graph. One on the left where the speed up
of parallelized execution improves. And one where adding additional cores has diminishing returns. This is
caused by either adding cores that do not much improve speedup. Or, even worst, when adding cores starts to
slows things down because the computer is doing more work adding threads than is by having more threads
work on the problem.

19

Amdahl’s Law:
Alternate Representation

P = expected performance improvement
Eu = Execution time on a uniprocessor (serial)
Ep = Execution time on a number of processors (parallel)
n = number of processors
S = fraction of time spent in the sequential time

This is an alternate representation for Amdahl’s Law. It is clearly the same thing as
before just using S as the fraction of the program that is spent in the sequential part
of the program.

20

Homework task

Watch 2nd part of Amdahl’s law video

Amdahl2.flv

Understanding Parallel Computing (Part 2): The Lawn Mower Law
LinuxMagazine

I do recommend watching this one as well, it is taking Amdahl’s a bit further, perhaps
simpler view (for gardeners especially), and suggests some drawbacks to the law
also.

21

Call for
PROPOSALS

now open!

New link added soon

Current projects listing:

To submit your own proposal
please using this structure and
send to me as an email:

Pxx: <acronym> - <proj title>
<brief overview>

<possibly code snippet to explain the
algorithm is relevant>

<any added wishlist/upgrade items>

Inputs: <interface to your module>
Outputs: < interface out of your module >

The focus is around a Verilog module you would implement, but
that module needs to be hooked up to the carrying system

Prelude towards YODA project with is more a Term 2 activity

With all the talk earlier about product validation and
teamwork, I couldn’t resist putting in a suggestion here
to anyone wanting to proposal their own YODA topic for
next term (and perhaps save me time writing up topic
ideas!).

Note that these are meant to be small experiments to
explore performance boosting of a task using a parallel
solution or specialized combinational logic hardware.
Nothing too ambitious. Take a look at the current YODA
project listing on the HPES website for ideas and
examples of how the project briefs are given.

22

An example YODA Project
Topic: SALG - Selection Address List Generator

• SALG sent starting address of a table in memory.
• Table has n elements.
• Each element of the table is in the form TableElement below.
• The SALG is sent a second address, inds, use to store the

addresses (i.e., the starting address of the relevant record field)
that matches the selection criteria (which is hardcoded).

struct TableElement{
unsigned key;
byte record[rsize];
};

TableElement table[n];

void SALGA(TableElement* table,
unsigned* inds, unsigned n){

unsigned n_inds = 0;
for (int i = 0; i < n; i++) {

if (table[n]->key & 1)
inds[n_inds++] =

&table[n]->record[0];
}

inds[n_inds] = 0; // set last one to null to indicate end of list
}

Choose your own selection criteria

Prelude towards YODA project with is more a Term 2 activity

Here is an example of a YODA project topic. You and or
your prospective YOG (i.e. YODA Group) need to prepare
something like this if you want to propose a topic.

23

Soon over to Prac1!

theory issues practical issues

Image source: https://creativecommons.org/publicdomain/zero/1.0/

Time to get ready to transition over to the prac.. but will end with reminder about
reading

24

closing
remarks & reminders…

25

 You are suppose to read (at least speed
read) the readings assigned as
recommended – the others are more for
deepening your insights into an area

open("L01 Berkeley 2006 - Landscale of
Parallel Computing Research.pdf") do pg1-8
… you might need to do more readings than that

26

Assigned Reading

For Tuesday next week…

S1 - Landscape of parallel computing
research: a view from Berkeley

Find it in: Abathuba / Readings
listed in Readings resources

There will be a short quiz, and I will follow that with solutions
and a short seminar on the paper to explain its highlights.
This paper is usually in the final exam syllabus.

27

FREE Creative Commons License
JAZZY FRENCHY
Music: https://www.bensound.com

28

Image sources:
Wikipedia (open commons)
http://www.flickr.com
http://pixabay.com/
https://publicdomainvectors.org

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,
particularly image sources that have been used in this presentation. I have put much
effort into trying to make this material open access so that it can be of benefit to others in
their teaching and learning practice. Any mistakes or omissions with regards to these
issues I will correct when notified. To the best of my understanding the material in these
slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0
International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to
this presentation (it’s not because I particulate want my slides referenced but more to
acknowledge the sources and generosity of others who have provided free material such
as the images I have used).

29

