
Lecturer:

Simon Winberg

High Performance

Embedded Systems

EEE4120F

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Lecture 2:

Terms, Amdahl Law &

Dealing with reading assignments

Notes and

explanations in the

slide comments

http://creativecommons.org/licenses/by-sa/4.0/

Outline for Lecture

 Terms

 Validation vs. Verification

 Commonly used verification methods

 Amdahl’s Law

 Prac prep

 Dealing with reading assignments

 Reminder: Quiz#1 next Tuesday!

TERMS

TRENDS

Terms

 Golden measure:
A (usually) sequential solution that you

develop as the ‘yard stick’

A solution that may run slowly, isn’t
optimized, but you know it gives (numerically
speaking) excellent results

E.g., a solution written in OCTAVE or MatLab,
verify it is correct using graphs, inspecting
values, checking by hand with calculator, etc.

Discussed a bit more later…

Don’t confuse the term Golden Measure with Golden Ratio which is

solving for g in g^2 = g + 1 ... g = (1+sqrt(5))/2 = 1.61803398875.

Terms: golden measure

 Sequential / Serial (serial.c)

A non-parallelized code solution

 Generally, you can call your code
solutions parallel.c (or para1.c, para2.c
if you have multiple versions)

 You can also include some test data (if
it isn’t too big, <1Mb), e.g. gold.csv or
serial.csv, and paral1.csv

Speed-up

 Speed-up = Tp1 /Tp2

 Where Tp1 = Run-time of original (or
non-optimized) program

 Tp2 = Run-time of optimised program

 Best practice for measuring speedup:
Run the program more than one,

discarding the first result (where the cache,
etc. is getting ‘warmed up’)

To be precise should indicate results from
when system wasn’t ‘warmed up’*

* (which can be simulated by running a whole lot of other things like CounterStrike, Half-Life, maybe some

Solitare* for good measure -- but more seriously you could write your own ‘cache cleaning program’)

Speed-up graphs

Other Important Terms

 Verification

 Validation

 Testing

 Correctness proof

These terms are not

merely theoretical terms

to remember, but relate

directly to your project.

Not something done in

the project (but if you

want to, you can

experiment with doing a

correctness proof if you

are keen)

Verification and Validation (V&V)
 Two terms you should already know…

 Verification

 “Are we building the product right?”

 Have we made what we understood we wanted to make?

 Does the product satisfy its specifications?

 Validation

 “Are we building the right product?”

 Does the product satisfy the users’ requirements

 Verification before validation (at least in duress)…

Sommerville, I. Software Engineering. Addison-Wesley, 2000.

While it would be nice to validate (seeing that the users are happy) before

verifying (checking the specs), doing so would mean your final design might

not match the specifications (which could open the door to legal problems).

Obviously this often doesn’t happen because in practice you want to make sure

the client is happy and there might not be time for proper validation.

Verification before validation

 The RC engineer (i.e., you) are effectively
designing both custom hardware and custom
software for the RC platform

 Before attempting to make claims about the
validity of your system, it’s usually best practice to
establish your own (or team’s) confidence in what
your system is doing, i.e. be sure that:

 The custom hardware working;

 The software implementation is doing what it was
designed to do; and

 The custom software runs reliably on the custom
hardware.

Verification

 Checking plans, documents, code,
requirements and specifications

 Is everything that you need there?
 Algorithms/functions working properly?
 Done during phase interval (e.g., design =>

implementation)
 Activities:

Review meetings, walkthroughs, inspections
 Informal demonstrations

Focus of

project

Focus of project

Commonly used verification

methods

1. Dual processing, producing two result sets
1. One version using PC & simulation only;

2. Other version including RC platform

2. Assume the PC version is the correct one
(i.e., the gold measure)

3. Correlate the results to establish correlation
coefficients

(complex systems may have many different sets of possibly multidimensional data
that need to be compared)

The correlation coefficients can be used as a kind of

‘confidence factor’

Validation

 Testing of the whole product / system

 Input: checklist of things to test or list of
issues that need to have been
provided/fixed

 Towards end of project

 Activities:
Formal demonstrations

Factory Acceptance Test

Focus of

project

Testing and Correctness proofs

 Testing
 Generally refers to aspects of dynamic validation in which

a program is executed and the results analysed

 Correctness proofs / formal verification
 More a mathematical approach
 Exhaustive test => specification guaranteed correct
 Formal verification of hardware is especially relevant to

RC. Formal methods include:

Model checking / state space exploration
Use of linear temporal logic and computational

tree logic
Mathematical proof (e.g. proof by induction)

Amdahl’s Law
EEE4084F

Speed-up

Number of processors

Amdahl’s Law: History

 The guy: Gene Amdahl
Was chief architect for IBM's first mainframe

series of computers

Founder of Amdahl Corporation

 Amdahl found stringent restrictions on the
speedup possible for given parallelized
tasks.

 Thee observations packaged as:
Amdahl's Law

Essentials of Amdahl’s Law

 Be aware that a computer program to run on
a parallel computer * pretty much always
has a part that is sequential, which can run
on only one core, and a part that is parallel,
that can be split between available cores

 But, let’s make things more fun (and hope
you then understand Amdahl’s better) by
proceeding to video linked on next slide.

 Comments on slide 19 elaborates further.

*well, we’re thinking here computers with one or more CPUs for their processing

Linux Magazine Video: Understanding Parallel Computing: Amdahl's Law

Amdahl.flv
https://www.youtube.com/watch?v=WdRiZEwBhsM

https://www.youtube.com/watch?v=WdRiZEwBhsM

Amdahl’s Law

 Define f as: fraction of computation that can
be parallelized (ignoring scheduling overhead)

 Then (1 - f) is the fraction that is sequential

 Define n = no. processors for parallel case

 The maximum speed-up achievable is:

1

f
(1 – f) +

n

Speedupparallel =

Should be able to remember this formula for exams

Amdahl’s Law:

Alternate Representation

P = expected performance improvement

Eu = Execution time on a uniprocessor (serial)

Ep = Execution time on a number of processors (parallel)

n = number of processors

S = fraction of time spent in the sequential time

Homework task

Watch 2nd part of Amdahl’s law video

Amdahl2.flv

Understanding Parallel Computing (Part 2): The Lawn Mower Law
LinuxMagazine

https://www.youtube.com/watch?v=ehyO7mxeU74
https://www.youtube.com/user/LinuxMagazine

YODA Project Topics

Call for

PROPOSALS

now open!

New link added soon

Current projects listing:

To submit your own proposal

please using this structure and

send to me as an email:

Pxx: <acronym> - <proj title>

<brief overview>

<possibly code snippet to explain the

algorithm is relevant>

<any added wishlist/upgrade items>

Inputs: <interface to your module>

Outputs: < interface out of your module >

The focus is around a Verilog module you would implement, but

that module needs to be hooked up to the carrying system

Prelude towards YODA project with is more a Term 2 activity

An example YODA Project
Topic: SALG - Selection Address List Generator

• SALG sent starting address of a table in memory.

• Table has n elements.

• Each element of the table is in the form TableElement below.

• The SALG is sent a second address, inds, use to store the

addresses (i.e., the starting address of the relevant record field)

that matches the selection criteria (which is hardcoded).

struct TableElement{

 unsigned key;

 byte record[rsize];

 };

TableElement table[n];

void SALGA(TableElement* table,

 unsigned* inds, unsigned n){

 unsigned n_inds = 0;

 for (int i = 0; i < n; i++) {

 if (table[n]->key & 1)

 inds[n_inds++] =

 &table[n]->record[0];

 }

 inds[n_inds] = 0; // set last one to null to indicate end of list

}

Choose your own selection criteria

Prelude towards YODA project with is more a Term 2 activity

Soon over to Prac1!

theory issues practical issues

Image source: https://creativecommons.org/publicdomain/zero/1.0/

https://creativecommons.org/publicdomain/zero/1.0/

closing

remarks & reminders…

Dealing with reading assignments

 You are suppose to read (at least speed
read) the readings assigned as
recommended – the others are more for
deepening your insights into an area

open("L01 Berkeley 2006 - Landscale of

Parallel Computing Research.pdf") do pg1-8

… you might need to do more readings than that

Assigned Reading

For Tuesday next week…

S1 - Landscape of parallel computing

research: a view from Berkeley

Find it in: Abathuba / Readings

listed in Readings resources

There will be a short quiz, and I will follow that with solutions

and a short seminar on the paper to explain its highlights.

This paper is usually in the final exam syllabus.

End of Lecture 2

FREE Creative Commons License

JAZZY FRENCHY

Music: https://www.bensound.com

https://www.bensound.com/

Image sources:

 Wikipedia (open commons)

 http://www.flickr.com

 http://pixabay.com/

 https://publicdomainvectors.org

Disclaimers and copyright/licensing details

I have tried to follow the correct practices concerning copyright and licensing of material,

particularly image sources that have been used in this presentation. I have put much

effort into trying to make this material open access so that it can be of benefit to others in

their teaching and learning practice. Any mistakes or omissions with regards to these

issues I will correct when notified. To the best of my understanding the material in these

slides can be shared according to the Creative Commons “Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)” license, and that is why I selected that license to apply to

this presentation (it’s not because I particulate want my slides referenced but more to

acknowledge the sources and generosity of others who have provided free material such

as the images I have used).

	Slide 1
	Slide 2: Outline for Lecture
	Slide 3
	Slide 4: Terms
	Slide 5: Terms: golden measure
	Slide 6: Speed-up
	Slide 7: Speed-up graphs
	Slide 8: Other Important Terms
	Slide 9: Verification and Validation (V&V)
	Slide 10: Verification before validation
	Slide 11: Verification
	Slide 12: Commonly used verification methods
	Slide 13: Validation
	Slide 14: Testing and Correctness proofs
	Slide 15: Amdahl’s Law
	Slide 16: Amdahl’s Law: History
	Slide 17: Essentials of Amdahl’s Law
	Slide 18
	Slide 19: Amdahl’s Law
	Slide 20: Amdahl’s Law: Alternate Representation
	Slide 21: Homework task
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Dealing with reading assignments
	Slide 27
	Slide 28
	Slide 29

