Revenge of the Synth:
Polyphonic Audio Synthesis using a
Field-Programmable Gate Array

Nicolas Reid%, Callum Tilburyi, and Justin Wylie§
EEE4120F Class of 2020
University of Cape Town
South Africa

TRDXNIC008 *TLBCAL002 SWYLJUS002

Abstract—This paper details the implementation of a classic
direct digital synthesis (DDS) algorithm on a Xilinx Artix-7
field-programmable gate array (FPGA), specifically looking at
its performance in synthesizing polyphonic audio. After a brief
history of these topics is presented, a more robust descrip-
tion of the relevant signal theory is discussed. Thereafter, the
implementation details using Verilog—a hardware description
language—are unpacked in depth, eventually leading to a simple
prototype of a digital synthesizer, using solely the FPGA board.
A so-called ‘golden measure’ is also developed, which runs on
a conventional microprocessor, the Teensy 3.6. By contrasting
these two approaches, a thorough analysis of the advantages and
drawbacks of hardware acceleration in this context is explored—
looking at a range of factors, including the polyphonic ‘voice’-
count capabilities, the achievable output frequencies, power
consumption, efficiency, and cost. Through these analyses, it is
concluded that the FPGA offers a attractive—perhaps commer-
cially untapped—solution to modern audio synthesis, boasting
benefits of scalability, reconfigurability, and high parallelization.

I. INTRODUCTION

Methods for synthesizing waveforms using digital circuits
have been around for many decades. Tierney et al. proposed a
so-called ‘Digital Frequency Synthesizer’ as early as 1971 [1],
which is fascinating considering the nascency of the ‘digital’
era at that time. In the decades that followed this seminal work,
much progress has been made—specifically in the methods
of direct digital synthesis (DDS), as well as across the whole
technological landscape. Much of the work done in improving
the methods of DDS has been focused on optimizing perfor-
mance, correcting for discretization effects, etc., and has been
largely successful.

Another interesting development in the digital era has been
that of reconfiguarble computing, specifically the advent of
the Field-Programmable Gate Array (FPGA). This class of
devices has been crucial in the strides made in hardware ac-
celeration—that is, using specific digital hardware to perform
tasks more efficiently than possible with software running on
a general-purpose processor. Applications of this range from
deep learning [2] to DNA sequence mapping [3].

This project aimed to explore the intersection of these
two advancements, looking at the implementation of a DDS

algorithm on an FPGA board. Specifically, by leveraging the
parallel capabilities of a hardware-based solution, polyphonic
audio synthesis was explored—where multiple tones of various
frequencies could be played simultaneously, with minimal
effects on audio latency. Such an approach acted as a proof-
of-concept for more advanced parallel implementations of
DDS, and broadly served as a testament to the power of both
hardware acceleration and reconfigurable computing within
this context. For appropriate comparison, a golden measure
was also created—essentially the same polyphonic synthesis
algorithm, but running on a simple microcontroller.

This report starts by outlining a brief background to dig-
ital audio synthesis, and discusses the motivating factors in
specifically using an FPGA for such a problem. It moves on
to describe in detail the structure and proposed design of a
polyphonic DDS system, showing a high-level systems view
via block-diagrams, and later diving into the salient code snip-
pets which reveal key functionality. Some discussion is also
mentioned surrounding the possible commercial opportunities
that this system could leverage, and what would need to be
improved to create a competitive product. Finally, the system
is put to the test. The experimental set-up is described, along
with a brief description of the golden measure implementation.
Some theoretical remarks and calculations are made, including
some observed unavoidable limitations for each approach,
followed by a set of practical, ‘real-world’ comparisons. This
leads naturally into a collection of detailed results, in the
form of oscilloscope photos and frequency spectrum plots.
Analysis is made into the achieved outputs, and a wide range
of quantitative factors are considered, including achievable
frequency ranges and polyphony capabilities, as well as power,
cost, and efficiency. Finally, conclusions are made, and various
avenues of recommended future work are mentioned.

II. BACKGROUND

Many audiophiles to this day will still hold analogue syn-
thesizers in high regard for their sound quality and organic
timbre characteristics, but digital implementations will take
the cake in a number of regards. The motivation for a digital
implementation is rooted in the following four key points:

(1) larger frequency ranges, (2) easier reconfigurability of
envelopes or filtering, (3) greater immunity to environmental
interference (such as temperature, dust and volatile dielectrics)
and (4) a generally smaller form-factor [4], [S].

The first point is critical for modern day communications
signals. This report, however, focuses on basic audio signal
generation. But, this is not to say that the investigation is
completely unrelated; the underlying principles are still the
same.

The other advantage factors will be common across most
digital implementation schemes. For example, most micro-
processors will come with built-in capabilities and software
libraries for handling impressively wide ranges of digital signal
processing. Why then, is it necessary to move to the far more
complicated realm of HDL and FPGAs?

The answer lies in the parallel computing capabilities and
direct clock access provided by an FPGA. Many operations in
the field of digital synthesis and DSP are highly parallelizable
and as such, exploits in the field (such as DDS) can benefit
immensely through the parallel digital acceleration achieved
in an FPGA implementation. The benefits are realised in
two main categories: higher frequency generation [6], and
maximum simultaneous output channels/‘voices’.

Furthermore, it is expected that additional bonuses may
present themselves along the way. Investigations will be
carried out accordingly — looking into power consumption,
resource usage and scalability.

The downside of an FPGA implementation is that they tend
to be enormously expensive when compared to their sequential
counterparts. This is an important factor which must be kept
in mind for any future product proposals.

III. METHODOLOGY

A fundamental philosophy in the design of this project
was the introduction of ‘levels of abstraction’. This entailed
progressively building layers of complexity, and incrementally
achieving higher levels of functionality, while simultaneously
forgetting about the minute details of lower levels. Such an
approach is easier for development, debugging, and overall
reliability. Furthermore, it helped massively with scalability,
thus allowing for easy inclusion of ‘stretch’ goals—plans for,
if time permitted, more advanced functionality built upon the
interfaces of the core modules.

A. Core Modules

In essence, direct digital synthesis is a method for gen-
erating periodic, discrete-time waveforms, using digital pro-
cesses [7]. There are several core elements to this algorithm,
starting with generating sinusoidal values (or whatever values
are relevant for the waveform), and then iterating through
these values at a specific rate (which is based on the target
frequency), in order to create a changing output signal of the
appropriate waveform. Polyphony takes this one step further,
and sums several unique changing waveforms together, thus
creating a single output signal containing multiple frequency
components. High level descriptions of these algorithms fol-
low.

1) Sinusoidal Waveform Generation: Fundamental to this
project is the calculation of a single sinusoidal waveform’s
values. Indeed, other waveforms were created by the FPGA—
square, sawtooth, triangle—but doing so was trivial in com-
parison, as they relied on simple arithmetic. The sinusoid, on
the other hand, presents an interesting design decision. One
can implement, using some clever mathematics, trignometric
functions that are synthesizable in Verilog (as is discussed
in [8], for example). While doing this provides flexibility in
the calculations, it is terribly inefficient for the DDS use-case,
as calculations would be needlessly repeated many thousands
of times every second. Instead, a look-up table approach was
taken—where predefined sinusoid values were stored on the
FPGA in BRAM, for a range of phase values. When a sinusoid
value was to be used, it could simply be read from this memory
block.

Fortunately, the look-up table can be optimized, by recog-
nizing the symmetry of the sinusoid waveform. Consider one
full period, w € [0, 27), of y(w) = sin(w) in figure 1.

)4

/

Fig. 1: Graphic showing one full period of sin(w)

Notice that the graph can naturally be split into four
segments—as is shown via the colouring—and that the latter
three segments are all simple translations of the first segment.
That is, suppose:

y3 (@) = {sin(w)lw € [0,)} (1)
It can easily be seen that:
y(w) = y1 (W) +ys (~w+tm) —y1 (w—m) —y1 (—w+2m) (2)

This result implies that instead of storing the entire period of
samples for the sinusoidal wave, one need only store the first
quarter. Thereafter, simple translations can be used to calculate
the other three quarters. With this in mind, consider the block
diagram for the sinusoid module, called fullsine_256,
shown in figure 2. This module requires an 8-bit sample
number (between 0 and 255), and returns a 11-bit value
(between 0 and 1024), representing the relevant sine value.

Importantly, this diagram depicts the first layer of abstrac-
tion. The memory block holding the first quarter of the sine
wave values is interfaced inside the fullsine_256 module,
and accepts a 6-bit index—i.e. between 0 and 63. The relevant
transformations for indices between 64 and 255 are calculated
in this module too. Externally, however, these details are
extraneous, as the module simply requires a sample index
and returns the appropriate sine value. After this module was
coded and working, the specifics of the implementation could
be ignored.

FullSine_256

invert?

convert to | 6

1st quarter i

index

Quarter Sine
Memory
Block

sample
number

CLK —{>

transform ————
Value

Fig. 2: Block diagram for fullsine_256 module

2) Function Generator: The next module to be discussed
was arguably the bedrock for the direct digital synthesis
algorithm, and it enabled monophonic audio synthesis. With
the fullsine_256 module defined, the next challenge was
to create changing waveforms—that is, a way of iterating
through the sinusoid look-up table values, at some rate, such
that a sinusoid signal was generated on the output. Moreover,
it was important that the frequency of this waveform could be
specified.

Consider the general case of a look-up table with n sam-
ples, which defines a single period of a particular waveform.
Suppose, then, this waveform should be played on the output
with a frequency of fj, which is a period of 7. Notice that
the address of the look-up table elements must be incremented
every % seconds—call this the ‘tick period’, T;. Figure 3
shows a diagram of this, in the sinusoidal waveform case.

To

Fig. 3: Graphic showing the relationship between the wave-
form period, Ty, and the tick period, T}

The ‘tick frequency’ is clearly equal to:
n
= — = 3
It Ty n fo 3
In order to achieve this frequency, one can scale down the
100MHz clock by a factor, o, which is a function of the desired

waveform frequency, fj:

100 x 106 Hz 100 x 106
a(fo) = 7, s 4

Scaling the main clock frequency is a fairly simple process.
Essentially, on both the rising and falling edges of the main

clock, a counter should be incremented; when this counter
reaches (« — 1), the scaled clock should be toggled on the
next main clock edge.

The index_generator module performed these dis-
cussed tasks. It accepted a given tick period, 7}, which was
used to scale the input clock frequency of 100MHz. The
module’s output was then the current index of the desired
waveform, at that moment in time (hence, index generator).
In the literature, this block is often called the phase accumu-
lator [7].

The current index, however, was not the end goal for the
function generation—as it still needed to be converted to an
actual waveform magnitude. Thus, the output of the index
generator was tied to the input of a sample_generator
module—also known as the phase-to-waveform converter [7].

This module accepted the phase index, as well as a ‘wave-
form definition’—with enumerated options of sinusoid, saw-
tooth, square, and triangle. This module then, based on the
chosen waveform definition, outputted the corresponding mag-
nitude value for the given phase index. For the sinusoid wave,
the module contained a fullsine_ 256 module, whereas
for the other waveforms, simple arithmetic could be used: the
index generator’s output signal was in fact already a sawtooth
wave, and thus needed only to be scaled appropriately; the
square and triangle waves were similarly trivial.

The function_generator module was the simple
composition of these two sub-modules. The modules are all
shown together in figure 5.

3) Mixer: The function generator module was able to
generate monophonic audio, but nevertheless lacked the ability
to play two or more notes simultaneously. Instead, upon yet
another layer of abstraction, the mixer module was defined.
This module was actually purely combinational—it did not
require a clock signal—and simply received the outputs from
multiple function generators, and combined them. The essence
of this requirement is shown in the block diagram of figure 4,
with N function generators, each with a unique tick period.

Wave
Defn
! Function |
] ! Generator 1 !
trrzzoooooooo Polyphonic
Pl Output

Function
Generator 2 |

—

Mixer

Tick Periods

! Function | |
! Generator N !

Fig. 4: Block diagram showing the use-case of the mixer
module

Function Generator

Index Generator

Phase index

Tick Period

Increments the phase index each
time the clock signal counts up to
> the tick period

Waveform definition

Sample Generator | sampie value

Outputs a sample value for a
given phase index and waveform
definition

Fig. 5: Block diagram for the function_generator module (Note that in the literature, the index_generator module
is referred to as the phase accumulator, and the sample_generator as the phase-to-waveform converter [T])

B. Interfacing Modules

The modules discussed so far have been part of the core
DDS functionality—generating waveforms, and mixing them
together. While these components formed the crucial elements
of polyphonic synthesis, it was also important to be able to
interact with the system. When packaged together as an ‘audio
synthesizer’, the FPGA required modules for interacting with
buttons, displaying values on the seven-segment displays, as
well as actually writing the polyphonic signal to an audio
output via pulse-width modulation. Some of the modules
responsible for these functions included the debounced_-
button, bcd_decoder, decimal_to_BCD, ssdriver,
and pwmor.

Note, however, that despite these modules being important,
their implementation is regarded to be generally straightfor-
ward. Since they did not contribute to the core of the DDS,
they are not described in detail in this paper.

C. Signal Shaping

Some early investigation was done into the shaping of the
audio output signals. Specifically, an ADSR (attack, delay,
sustain, release) envelope—as called in the audio synthesis
community—was created. This allowed a shaping of the
amplitude of each note, during and after it was pressed on
the synthesizer. For example, the parameter of attack indicates
how quickly the note rises to its full amplitude. These effects
are a key component in a decent synthesizer, and they allow
for great versatility in the production of electronic music.

D. Future Modules

Since the time for this project was fairly restricted, much
of the desired additional functionality could not be included.
These things would arguably improve the overall system and
its performance as an audio synthesizer. Examples include the
addition of analog input controls (using the XADC tools on
the Xilinx) for things like pitch bending and filter control,
the reading and recording of MIDI files (using the microSD

card slot, or some of the external pin connections), and so on.
Unfortunately the investigation and implementation of these
modules were out of scope. Nevertheless, the project is highly
scalable, and such features would likely be easy to integrate
into the existing setup.

IV. DESIGN

The system is set out with the hope that it will eventually
operate as a stand-alone product. This means that, as an end
product (further theorised in Section V.), the system would
not depend on a host. Peripherals might be added (larger
keyboards, analog inputs, communication links for reconfig-
uration, etc.), but the core system would remain functional on
its own: an FPGA/sized-down version, an array of keyboard
buttons, some settings buttons and an output speaker. The
rough idea is laid out in figure 6 below.

)
vmﬂ?-\&\\l\mwﬁ

PITCH BEND,
Q CONTROLS
o]e)

e
4@'@

SYNTHESIZER
OUTPUT

S

woimoNAL || (@) @ et
DIGITAL @ \
CONTROLS 0

>12 PREDEFINED KEYS L EXTERNAL

__/ D

Fig. 6: A simplified concept sketch showing the FPGA as the
core element interfacing with various peripherals

FOR DEDICATED NOTES BUTTONS

The FPGA serves to receive user inputs, process data
and output formatted results. It should produce repeatable,
consistent results, unless (as mentioned in Section V.) the
user decides to alter/customize specific code sections. The
following design sections detail each of the aforementioned
Verilog modules, which come together to form ‘The Revenge
of the Synth’.

A. fullsine 256

To save on memory space, a smaller LUT, holding quarter
sine wave samples, is used to extract the appropriate sample
value when requested. This requires knowledge of the current
sample number, and subsequently inverts or reverses the value
of the quarter sine wave value if appropriate. Listing 1 presents
an outline of the methods used.

Listing 1: Invert and reverse logic from fullsine_256 for
a quarter sine wave LUT.

//Determine the states of 'reverse' and 'invert' flags
2| if (&sample_num[7:6] && |sample_num[5:0]) begin
3 //Code here to deal with 193-255 (63 samples)

4 //Fourth Quart (1:63)

5 reverse = 1;

6 invert = 1;

7 address = sample_num[5:0] - 1;

11| end else begin

12 //Code here to deal with 0-64 (65 samples
13 //First Quart (1:64) + First Quart (64)

14 reverse = 0;

15 invert = 0;

17 if(sample_num[6])

18 address = 6'b111111;
19 else

20 address =
21| end

sample_num([5:0];

23| //Perforom reverse addressing if required
24| if (reverse)

25 addra =
26| else

27 addra = address;

6'd63 - address;

In short, the module takes in a clock signal (CLK100MHZ)
and the current index number (sample_num), and outputs the
corresponding next sample value (value). It will be called
upon by the sample_generator.

B. index_generator

The sine wave is one example of the waveforms used
in this system. As alluded to above, the discrete sample
values are indexed from O to 255. The index_generator
module dictates the time taken to increment this index value,
depending on a desired frequency. It relies on the clock signal
as a base frequency and a pre-calculated tick period (ticT)
as follows in listing 2.

Listing 2: Index incrementation performed in the index_-—
generator module.

1| always Q@ (posedge clk) begin
2 // Increment tick counter
ticCount <= ticCount + 1;

// Check if cap has been reached
6 if (ticCount >= ticT) begin

7 // The next sample value is needed -> increment phase
<~ index

8 phIndex <= phIndex + 1;

9 // Reset tick counter

10 ticCount <= 1;

11 end

12| end

C. sample_generator

The sample generator follows on from the index generator,
using the phase index value (0-255) to access/calculate the
sample value, depending on the requested waveform. Wave-
forms are identified in code using the following enumerated
parameter constants.

Listing 3: Setup of waveform identifier constants.

|| parameter [1:0] SINE = 2'b00;

2| parameter [1:0] SQUARE = 2'b01;

3| parameter [1:0] TRIANGLE = 2'bl0;
4| parameter [1:0] SAW = 2'bll;

The sine wave samples are simply read from the full-
sine_256 module. Sawtooth, triangle, and square wave
samples are generated as follows in listing 4.

Listing 4: Code to return the specified wave form’s sample
value at the current phase index.

/7 ..

2| else if(waveform == SQUARE) begin

// Set square wave sample value

4 if(phIndex < 8'dl28) begin // First half
5 sampVal <= 11'd2047;

6 end

7 else begin // Second half
8 sampVal <= 11'd0;

9 end

10| end

11

12| else if(waveform == SAW) begin

13 // Set sawtooth value (propto phase index)

14 sampVal <= (phIndex<<3);

15| end

16
17| else if(waveform == TRIANGLE) begin
18 // Set triangle wave sample value
19 if(phIndex < 8'dl28) begin

20 sampVal <= (phIndex<<4);

21 end

22 else begin

23 sampVal <= 2047- (phIndex<<4);
24 end

25| end

6| // ...

// First half

// Second half

D. function_generator

The Function Generator simply encapsulates the Index
Generator and Sample Generator modules; offering a sense
of abstraction and ease of access for modules higher up.

E. mixer

The mixer first adds all signals which are currently being
requested. Each signal can be seen as a separate voice channel.
A enabled bitmask is used to enable/disable signals on
demand.

Listing 5: Code to add signals that are being requested.

[15:0] signal_mixed_prescale =
enabled[0] * signal_a +
3 enabled[1l] = signal_b +
4 /] ...

wire

The next step is to normalise the overall output signal, i.e.
the result of combining/‘mixing’ the channels. This is done as
follows:

Listing 6: Code to normalise signals that are being requested.

1| assign signal _mixed = (signal_mixed prescale >> 5);

Note that the prescaled sum value is stored as a 16-bit
value, and thus must be bit shifted by 5, back to 11-bits.
This ensures that the output signal will not saturate and cause
unwanted audio distortion (i.e. ensures that signal_mixed
< 2047).

F. Background & Ported Modules

The following modules are excluded from the full design
discussion because they were either derived from code pro-
vided by the EEE4120F department, or remain non-crucial to
the core of this project.

e ssdriver: Used to write to the seven segment display.

e debounced_button: Stabilises button states on tran-

sition edges (pressing/releasing).

o pwmor: Converts samples to a PWM signal for the audio

jack.

e decimal_to_bcd: Converts an integer value to binary-

coded-decimal format.

e bcd_decoder: Converts a single digit (0-9) into a seven

bit code which will be used to display the digit on the
seven-segment LED display.

V. PROPOSED DEVELOPMENT STRATEGY

The discussion so far has shown how the methods of direct
digital synthesis can be applied on an FPGA for polyphonic
audio creation, taking advantage of the highly ‘parallelizable’
nature of such a device. Further advantages include recon-
figurability, scalability, and power consumption. Importantly,
the use of an FPGA in this field presents a great commercial
opportunity.

In order for this to happen, though, further development is
required. The exploration done in this project resulted only in a
prototypical audio synthesizer device, and was a fairly simple
iteration thereof. Audio synthesizers have been around for
many decades, and are highly common in the music industry
for a broad range of genres. As a consequence of this, the
technology is well developed, and there are a host of standard
features which one would expect in such a product. In order
to compete in the market, these standard features are required,
at least.

For example, modern synthesizer devices almost always
have a MIDI interface, due to the ubiquity of MIDI in digital
recording workstations (DAWSs) and contemporary music pro-
duction. Moreover, synthesizers usually come with a massive
array of built-in sounds, effects, filtering options, and other
tools. Finally, user interaction with the devices is usually
simple, intuitive, and versatile.

This is not to say that the FPGA cannot compete in the
market. With further time (and money), the aforementioned
features are all physically realizable, and some may even

operate faster or more efficiently due to being implemented
in hardware. The device is particularly scalable, where the
addition of polyphonic voices, functional blocks, and other
audio tools should not noticeably affect the latency of the
output signal. With sufficient effort, it is likely that the FPGA
could be on par with the conventional synthesizers on the
market.

Crucially, though, this development process must be taken
one step further. One should not only aim to emulate the
existing devices on the market with the FPGA solution. Rather,
one should leverage the characteristics of the hardware, and
thus create a competitive advantage. It has already been
pointed out that the FPGA can be highly scalable, and this
offers great benefits to its functionality. One can think even
more creatively, though.

For example, imagine a product which promotes the idea
of ‘build-your-own-synth’ or ‘create-your-own-effect’. Such a
device could be built upon the foundations from this project,
where direct digital synthesis is implemented on an FPGA.
Furthermore, a ‘drag-and-drop’-styled graphical application
could be developed, where a user can design and implement a
wide variety of sounds, filters, effects, and more, and link them
into a full signal chain. This design could be compiled into
synthesizable Verilog code, which could be further tweaked,
if necessary. Finally, the code could be uploaded to the board,
thus creating a user-defined custom synthesizer device.

Key to this idea is the reconfigurability of the FPGA
platform, together with its parallelizability, creating something
which is simply unattainable on a conventional serial pro-
cessor. This way of thinking—though here just manifested
as an initial, simple product idea—is vital to commercial
competitiveness of an audio synthesizer based on an FPGA
platform. That is, one should innovate and rethink conventional
processes, taking advantage of the power of hardware.

Other opportunities exist for FPGA-based digital synthesis,
ranging from telecommunications to equipment testing. How-
ever, since this project focused solely on audio synthesis, these
alternative applications are not discussed further.

VI. EXPERIMENTATION
A. Golden Measure Overview

It is critical to note that this project was not simply to
design the FPGA implementation of a DDS algorithm, nor
was it purely to create a polyphonic synthesizer. Instead, these
achievements were pursued in order to understand the benefits
and/or drawbacks of using the FPGA in such applications,
as opposed to a conventional method like using a microcon-
troller. It was vital then to develop simultaneously a so-called
‘serial implementation’, to which the FPGA solution can be
compared—a golden measure.

It was decided that the PJRC Teensy 3.6 development board
would be used to implement this alternative approach. The
board has a 180MHz ARM Cortex-M4 processor—which felt
like a good candidate for fair comparison with the Nexys
A7. Interestingly, the Teensy has great audio support from
a large open-source community, and its ‘Audio’ library is

truly impressive. However, to compare the Teensy with the
FPGA implementation accurately, it was imperative for similar
(ideally identical) DDS algorithms to be running on each
platform—that is, it would be unfair to compare the sophisti-
cated and well-developed polyphonic audio synthesis libraries
running on the Teensy, whereas on the FPGA, the solution has
been designed from scratch.

The heart of the golden measure implementation lay with
the Teensy’s IntervalTimer library', which wraps functionality
around the board’s Periodic Interrupt Timers (PIT). Essentially,
a timer object is created with a specified microsecond interval
value, and set-up with a interrupt routine. This routine is then
periodically called, in intervals of the microsecond value. An
example of setting up a timer is shown in listing 7.

Listing 7: IntervalTimer basic set-up

IntervalTimer timer;
2| timer.begin (/*Interrupt Routinex/,/*Microsecond Intervalx/);

For each timer, a separate counter variable was created. In the
interrupt routine, which was written as a lambda expression for
both simplicity and speed, the counter was increased by 1. This
had the effect of incrementing the counter at a specified fre-
quency, determined by the microsecond interval. This process
emulated the FPGA’s index_generator functionality. On
the output audio, then, the counter was used as an index for
the sinusoid look-up table. Note that, as done in the FPGA
solution, only a quarter-period of the sinusoidal wave was
stored. Pseudocode showing the process for one voice is given
in listing 8.

Listing 8: Key code snippets from the Teensy implementation

1| IntervalTimer timerA;

2| unsigned char counterA = 0;

3| const int wave[] = {/* 64 values for first quarter period */};
float fregA = 261.63; // Example of a Middle-C note

6| void setup() {

7 // Start the IntervalTimer

8 timerA.begin([] () {++counterh;}, (1.0e6)/ (freghx256.0));
9| }

10
11| void loop() {

12 // Output audio

13 analogWrite (audioPin, wave[quarterToFull (counterd)]);
14}

For each voice in the arrangement, a separate timer was cre-
ated, and that voice’s interrupt incremented a unique counter.
These counters ranged from 0-255 (stored as unsigned
char types, so they overflowed at 256 automatically), and
referred to the current index in the wave array, from which the
current sample was read. The samples from each of the voices
were summed and scaled, and played on the audio pin via a
standard PWM library. Since the different timers had different
microsecond intervals, the resulting audio was polyphonic.

As a side note, such an algorithm is not in fact completely
‘serial’. There are four PITs on the Teensy, and all can be
used essentially independently—which is, in a sense, a parallel
implementation. This does not mean that it fails to serve as

Thttps://www.pjrc.com/teensy/td_timing_Interval Timer.html

a comparative tool, though. Nevertheless, a stricter ‘serial’
approach could also considered: where only one of the timers
is used (though, technically, this is still a somewhat parallel
approach).

B. Theoretical Considerations

1) Voice Count: Because the golden measure solution uses
a hardware timer for each voice in the polyphony, it is known
that the Teensy is limited to four simultaneous tones (as it has
four Periodic-Interval timers). It is difficult to compare this
metric upfront with the Nexys A7 board, however, because
the number of look-up tables required for the FPGA solution
must be determined empirically from the synthesized bitstream
information. Having said that, the board has over 15 000
logic slices, each with several look-up tables and flip flops.
On the surface, then, it seems that the FPGA will be able to
accommodate many simultaneous voices—far more than four.

2) Upper Frequency Limit: Both approaches to the audio
synthesis problem faced an interesting theoretical constraint:
an upper frequency limit. Firstly, consider the case of the
Teensy, which uses an interrupt routine to increment the
counter. Listing 9 shows the member function for ‘starting’
the IntervalTimer object.

Listing 9: begin() member function in IntervalTimer library

bool begin(void (xfunct) (), float microsec) {
if (microsec <= 0 || microsec > MAX_ PERIOD)
uint32_t cycles = (float) (F_BUS / 1000000)
if (cycles < 36) return false;
return beginCycles (funct, cycles);

return false;
* microsec - 0.5;

n B L1

ol }

Notice the calculation of cycles:

1 x 106

where F_BUS is the peripheral bus clock frequency. ‘Cy-
cles’ defines the number of ticks of the F_BUS clock between
successive calls of the interrupt function. Crucially, the Cortex-
M4 requires at least 24 cycles for entering and exiting the
interrupt routine [9]. Additionally, the interrupt functionality
itself requires a certain number of clock cycles, and there are
also possibilities of cache misses, etc. To be safe, the minimum
cycle count allowed is defined to be 36, as already seen in
listing 9.

The Teensy 3.6 has a standard F_BUS of 60MHz, which
means—after rearranging equation (5)—the minimum possible
microsecond interval allowed is:

(1 x 105)(cycles + 0.5)
F_BUS

Importantly, this is the period between index increments.
One full period of the output sine wave is 256 samples, and
thus requires 256 increments. As a consequence, the minimum
output period is 256 x 0.608us. This means a maximum
frequency of:

cycles = x microseconds — 0.5 5

minimum(us) = = 0.608us (6)

1

maximum (fout) Teensy — m

=6424.8Hz (7)

https://www.pjrc.com/teensy/td_timing_IntervalTimer.html

Note that this frequency falls far below the maximum audible
frequency (for humans) of around 20kHz, and does not even
cover all the notes on a conventional piano.

It is possible to overclock the Teensy, and doing so does
improve the situation slightly—though it is not necessarily
a sustainable or reliable approach. For the 3.6 model, the
primary clock can be pushed to 256MHz, and the peripheral
bus clock to 128MHz. Following the same logic as above,
the maximum output frequency then increases to 13.70kHz—
which still fails to cover the full audible range.

The FPGA, on the other hand, is able to use the raw clock
signal of 100MHz, and create in hardware a tick counter—as
opposed to regularly calling an interrupt routine. Using similar
calculations, its maximum theoretical frequency is thus:

1

i
256 X {55510

maximum(fou)rrca = =390.6kHz (8)

This upper limit is well outside the audible range, which is a
great sign for the FPGA, in stark contrast to the poor result
from the Teensy 3.6.

3) Discretization Effects: Notice that regardless of the
board used, the method of direct digital synthesis increments
an integer counter based on some tick frequency. Naturally,
then, not every frequency can be achieved, even if it falls
below the previously discussed maximum frequency—there is
essentially a discretization error.

Say, for example, one wanted to generate a 3520Hz sine
wave—an A7 note in twelve-tone equal temperament tuning.
For a waveform definition spanning 256 samples, according to
equation (3), the look-up table index should be incremented
every T; = 1.101us. For the FPGA, using its 100MHz clock
directly, this requires a scaling factor, a = 110.97. Of course,
this scaling factor must be a whole number, which means
a =~ 111. Theoretically, the effect of rounding off this value is
that the actual frequency played on the output is 3519.14Hz—
an error of only 0.86Hz.

Compare this to the Teensy, which has to use periodic
interrupt calls to scale its peripheral bus clock of 60MHz.
Moreover, recall that each interrupt must take at least 36
cycles. Following through with the calculations, this limitation
theoretically restricts the Teensy to playing 3255.21Hz for the
AT note, which is an error of 264.79Hz. Such a large error is
certainly noticeable, even to the untrained ear.

Hence, even though both boards suffer from discretization
problems, the FPGA is theoretically in a far stronger position
in this regard.

C. Planned Practical Considerations

Moving past the theoretical considerations, it was impor-
tant to test the two solutions practically, and evaluate their
respective performances. To do this, a handful of test pro-
cedures were defined, and these are specified briefly in the
following paragraphs. Note that due to unforeseen stay-at-
home lockdown circumstances (due to the ongoing COVID-19
pandemic), access to a modern digital oscilloscope was lim-
ited. Instead, an old analog oscilloscope was used, and physical

photographs were taken of the CRT screen for this report.
While detailed measurements were sacrificed in this approach,
the shapes of the output waveforms were nevertheless shown.
Where more specific frequency measurements were required,
a simple spectrum analyzer phone application was used.

Firstly, the simple monophonic case was tested, across the
various waveform definitions. Recall that four definitions were
designed: sinusoidal, triangle, sawtooth, and square. Each of
these was tested on both the Teensy (golden measure) and
FPGA boards. Verification was done via inspection on the
oscilloscope, and the spectrum analyzer.

Next, the polyphony was checked. This was initially done
with just two voices—the addition of two sinusoid waves, as
well as the addition of two triangle waves. These results were
checked on the oscilloscope, for both the Teensy and FPGA
implementations. Thereafter, a 12-note polyphonic test was
run, which could only be done on the FPGA (since the Teensy
is limited to 4 separate voices). Because this signal would be
difficult to visualize on an oscilloscope, the spectrum analyzer
application was used here instead—with the goal being 12
distinct frequency peaks in the spectrum.

It was then important to test the theoretical claims of
frequency accuracy and range discussed in section VI-B2.
Both boards were tested at a host of values, and the errors were
considered. Also, the Teensy was tested below- and above its
theoretical maximum of around 6400Hz—confirming whether
this was indeed the case. This step was not necessary for
the FPGA, as its output covered the entire audible frequency
range. Instead, it was simply confirmed that the board could
play high frequencies within hearing.

Though not discussed in detail in this report, the ADSR
envelope was then applied and tested. Unfortunately, the rudi-
mentary analog oscilloscope prevented decent measurements
of such tests. Instead, a testbench written and run for the
ADSR module, simulating the salient functionality.

Finally, the power usage of both implementations was
investigated briefly. Doing so for the Teensy was limited to a
handful of current and voltage measurements, whereas on the
FPGA, a more detailed breakdown was given via the Xilinx
Vivado suite of tools.

VII. RESULTS

A. Waveform Definitions

The first important requirement was to have the ability
to synthesize multiple waveform definitions, and be able to
switch between them on-the-go. Figure 7 shows each of
the four implemented shapes being generated at ‘middle C’
frequency, 261.6Hz.

Notice the thick, generally smooth plotting—this is due to
the slightly coarse nature of the analogue oscilloscope which
was used. The overshooting present at the discontinuities in the
square and sawtooth waves is a natural effect of rapid changes
in the output value, as well as some oscilloscope inaccuracies.

(a) Sine wave: 261.6Hz (b) Triangle wave: 261.6Hz

(c) Square wave: 261.6Hz

(d) Sawtooth wave: 261.6Hz

Fig. 7: Examples of various waveform definitions, all at
middle-C

B. Polyphony

In these tests, two or more notes were played at the
same time. Three specific cases are considered: mixing two
sinusoidal waves, mixing two triangle waves, and mixing 12
sinusoidal waves. The former two—seeing as they are fairly
simple—are shown on the oscilloscope screen, whereas the
latter is shown on a spectrum analyzer.

1) Mixing Two Sine Waves: Figure 8 shows the result of
mixing two sinusoidal waves, the notes C4 and F4.

Fig. 8: Successful polyphony: mixing two sine waves.

Note the interesting polyphonic shape. This waveform was
confirmed to be correct by comparison with computer plotting
software.

2) Mixing Two Triangle Waves: Figure 9 shows the result
of mixing two triangle waves, again with the notes C4 and F4.

Fig. 9: Successful polyphony: mixing two triangle waves.

Similar to the sine wave version, the triangle waves can
be seen to overlay each other, where the higher frequency
oscillates within the envelope of the lower.

3) Playing 12 Channels Simultaneously: A cellphone-
based spectrum analyser was used to inspect the result of
playing 12 separate frequencies at once. Figure 10 below
clearly shows 12 distinct peaks.

Fig. 10: Twelve channel polyphony. 100Hz — 2.8kHz.

Note that the frequency axis is logarithmically scaled, and
this is why the lower frequency peaks appear to be wider and
more rounded.

It is supposed that the slight differences in magnitude (de-
spite being equal amplitude sinusoids) may be due to ambient
noise interference, or perhaps the frequency characteristics of
the output speaker through which the audio is playing.

C. Frequency Accuracy

The note ‘middle C’ is positioned precisely at 261.63Hz.
The discretization error, calculated here, theorises that the
FPGA implemetation should only be inaccurate by 0.01Hz.
According to the (admittedly, rather crude) measurements in
figure 11, the error appears to be slightly larger—instead
missing the mark by at least 0.14Hz.

The reason for this is uncertain. Nevertheless, the difference
is audibly imperceptible and it is supposed that the the basic
phone application used for this analysis might be partially to
blame.

The Teensy implementation was theorised to be over 1.2Hz
more inaccurate at the middle C frequency. However, test
results were inconclusive due to the lack of precise instru-
mentation available.

https://docs.google.com/spreadsheets/d/1Dabn_KHIvqMRiAQt_axcPep1rmWHjwfdVPz2w-2yUDk/edit?usp=sharing

"*"“Mwww

"’W‘\WW

WWF‘(MW,

Fig. 11: Middle C sine wave frequency spectrum analysis.

D. Power Consumption

The power usage of such a relatively simple (computation-
ally speaking) set of process should generally not be too much
of a concern. However, it is still an important parameter to
discuss. If, for example, future product developments might
want to be made portable, the power consumption would then
become a critical factor. Figure 12 shows a summary of the
on-chip power usage of each section for the FPGA solution.

On-Chip Power

Dynamic: 0.040W [29%
29%
e Clocks: 0.008W (14%
13% o) . .
10% Signals: 0.005W (13%
Logic: 0.004W (10%
71% 60% BRAM: 0.024 W
lok 0.001W 3%
Device Static: 0098w (71%

Fig. 12: Graphic showing the FPGA power usage characteris-
tics.

As might be expected, the static power usage dominates the
overall consumption: Pj,q; = 0.138W. Block-RAM takes up
most of the dynamic power; this is assumed to be a result of
the sinewave sample storage required by the system.

Notably, the I/O power usage (buttons and speaker output)
remains relatively low. This implies that the addition of a full
keyboard set of buttons and potentially more speakers would
lead to minimal extra power costs.

For comparison, some simple current and voltage measure-
ments were taken on the Teensy 3.6 while it was running the
DDS algorithm, at the recommended 180MHz clock frequency
(i.e. not overclocked). At maximum capacity with four inde-
pendent voices, the average current drawn was around 87mA,
at a voltage of around 5.01V. Thus, the average power con-
sumption for the golden measure solution was around 0.435W.

Interestingly, based on these preliminary measurements, the
power consumption of the microcontroller board was more
than three times greater than that of the FPGA. However, more
detailed tests and measurements would need to be done in
order to make reliable conclusions about this.

E. Resource Usage

Of the total 63400 LUTs available in the Artix A7 FPGA,
only 732 (1.15%) were used in the the final design of this
system. The function_generator module is understand-
ably the main culprit for this utilization factor, due to its heavy
calculation requirements. This low portion of resource usage
suggests that the system might be substantially expanded in
future developments.

F. ADSR Envelope

The ADSR envelope functionality was tested using a simple
testbench module, where an input button’s state was ‘pressed’
twice for different lengths of time. A square wave input signal
was used for simulation, and arbitrary ADSR parameters were
set. The results of this test are shown in figure 13.

Signals
Time

signal_in[10:0] =

button_state

scaler[10:0]

signal_out[10:0] =

Fig. 13: Sample testbench output for ADSR envelope

Notice that the scaler parameter is synchronized with
the button_state: when the button goes high, the attack
section begins, once the scaler reaches max value the decay
section begins, and eventually the scaler settles at the sustain
value; when the button is released, the scaler is slowly released
to zero. Importantly, the actual signal output follows the
envelope of the scaler signal, but is centered around 1024 (as
this represents an output value of ‘zero’).

Through this simple simulation, together with an audible
verification test actually running on the FPGA board, it was
confirmed that the ADSR functionality was working. Unfor-
tunately, implementing this envelope feature on the Teensy
board would require much more development, and even then,
may not be reliable. It was thus not included for comparison
in this test.

G. Cost Analysis

The rough pricing for the two implementations is presented
in Table L.

The difference is significant, however, it is difficult to tell at
this stage whether or not the advantages of the FPGA warrant
its greater expense for this system. The decision ultimately

Full package
R4616
R642

Just the chip
R2187
R306

Nexys A-7
Teensy 3.6

TABLE I: Costs of the FPGA board compared to the golden
measure solution

lies with the end-product manufacturer. It may be the case
that the DDS system detailed in this report forms part of a
massive line of infrastructure, consisting of tens of thousands
of copies. In such a scenario (particularly if the advantages
discussed are valuable for the purpose in question), it might
be worth constructing an ASIC implementation, which would
further lower the cost.

The Nexys A-7 is also a very feature-rich board, largely
unnecessary for this project. There are cheaper boards on the
market. And there is also the option of investing in a more
customised approach, using just the chip—which comes at
around half the price.

VIII. CONCLUSION

This investigation comes to a close on a tunefully successful
note. The final design is able to run as a stand-alone system,
consisting of the Nexys-A7 FPGA board, a speaker and
peripheral “keyboard” buttons. There are 12 external buttons,
each was tied to a note within a full (pre-assigned) octave
scale. On-board buttons may be used to shift up and down
by degrees of one octave scale at a time. Remaining on-
board buttons were left to switch between a variety of four
waveforms: square, sinusoid, sawtooth and triangle.

A core objective outlined in the at the onset of this report
was to achieve polyphonic audio synthesis. As shown in
section VII-B of the results, it was proven possible to play
as many as twelve notes simultaneously.

The board’s built-in seven-segment display was used to
show the current waveform and octave selections, each as 2-bit
binary codes. This resembled, to some extent, a live display
panel. In future expansions this may be extended to include
the frequency/s being played.

Another fundamental aim of the project was to compare the
FPGA’s performance with that of a sequential microprocessor.
The Teensy 3.6 was used as this golden measure for a
sequential implementation. The basic operation was kept as
similar as possible between the two platforms, i.e. each was
made to directly compute sample values on-the-fly. Naturally,
the Teensy implementation might have taken advantage of
optimized audio synthesis libraries, but this would not have
been a fair comparison.

The extent of polyphony capability (number of simultaneous
channels) was a major draw-card for the parallel FPGA imple-
mentation. The Teensy was limited to only four simultaneous
tones, while the FPGA was proven to easily cope with twelve
(and should, in theory be able to handle far more).

As discussed in Section VI-B2, the Teensy is limited to
a maximum output frequency of 6424.8Hz. Furthermore, it
suffers major losses in accuracy as the frequency demand
increases. The Nexys A-7, on the other hand, reaches its

theoretical maximum at an impressive 390.6kHz. It too suffers
from discretization errors; however, these would be impercep-
tible to the human ear.

Cost was was an important factor to consider. Particularly
because of the great disparity in pricing between the Nexys
A-7 and Teensy 3.6. The Teensy comes off the shelf at almost
one tenth the price of the the FPGA. Even so, a fair comparison
is difficult, not knowing what the ultimate use case might be
for this system.

All-in-all, through the ‘Revenge of the Synth’ investigation,
the advantages of the FPGA’s parallelism were made obviously
apparent when compared to a conventional microprocessor’s
sequential implementation. The results are satisfying to behold
and one can all but become excited for the future of parallelism
and direct digital synthesis. There is certainly scope for future
investigation, building upon the research done here.

APPENDIX

Please find all Verilog code used for this project here:
https://github.com/wylieza/revenge_of_the_synth

REFERENCES

[1] J. Tierney, C. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE
Transactions on Audio and Electroacoustics, vol. 19, no. 1, pp. 48-57,
1971.

[2] G. Lacey, G. W. Taylor, and S. Areibi, “Deep learning on fpgas: Past,
present, and future,” arXiv preprint arXiv:1602.04283, 2016.

[3] E. B. Fernandez, W. A. Najjar, S. Lonardi, and J. Villarreal, “Multi-
threaded fpga acceleration of dna sequence mapping,” in 2012 IEEE
Conference on High Performance Extreme Computing. 1EEE, 2012,
pp. 1-6.

[4] K. Bhagat, “Tutorial on designing and implementing a direct digital
synthesizer (dds) on a field programmable gate array (fpga),” Master’s
thesis, University of Illinois at Urbana-Champaign, 2012.

[5] L. Cordesses, “Direct digital synthesis: A tool for periodic wave genera-
tion,” IEEE SIGNAL PROCESSING MAGAZINE, 2004.

[6] Leitner, Stefan, Wang, Haibo and Tragoudas, Spyros. “Design Techniques
for Direct Digital Synthesis Circuits with ImprovedFrequency Accuracy
over Wide Frequency Ranges.” Journal of Circuits, Systems and Com-
puters 26, No. 2 (Feb 2017). doi:10.1142/S0218126617500359.

[7] L. Cordesses, “Direct digital synthesis: A tool for periodic wave gen-
eration (part 1),” IEEE Signal processing magazine, vol. 21, no. 4, pp.
50-54, 2004.

[8] K. A. Davis, “Computing sin cos in hardware with synthesisable
verilog.” [Online]. Available: https://kierdavis.com/cordic.html

[9] P. Stoffregen, “Intervaltimer tuning.” [Online]. Avail-
able: https://forum.pjrc.com/threads/33089- Interval Timer-tuning?p=
96627 &viewfull=1#post96627

https://github.com/wylieza/revenge_of_the_synth
https://kierdavis.com/cordic.html
https://forum.pjrc.com/threads/33089-IntervalTimer-tuning?p=96627&viewfull=1#post96627
https://forum.pjrc.com/threads/33089-IntervalTimer-tuning?p=96627&viewfull=1#post96627

	I Introduction
	II Background
	III Methodology
	III-A Core Modules
	III-A1 Sinusoidal Waveform Generation
	III-A2 Function Generator
	III-A3 Mixer

	III-B Interfacing Modules
	III-C Signal Shaping
	III-D Future Modules

	IV Design
	IV-A fullsine_256
	IV-B index_generator
	IV-C sample_generator
	IV-D function_generator
	IV-E mixer
	IV-F Background & Ported Modules

	V Proposed Development Strategy
	VI Experimentation
	VI-A Golden Measure Overview
	VI-B Theoretical Considerations
	VI-B1 Voice Count
	VI-B2 Upper Frequency Limit
	VI-B3 Discretization Effects

	VI-C Planned Practical Considerations

	VII Results
	VII-A Waveform Definitions
	VII-B Polyphony
	VII-B1 Mixing Two Sine Waves
	VII-B2 Mixing Two Triangle Waves
	VII-B3 Playing 12 Channels Simultaneously

	VII-C Frequency Accuracy
	VII-D Power Consumption
	VII-E Resource Usage
	VII-F ADSR Envelope
	VII-G Cost Analysis

	VIII Conclusion
	Appendix
	References

