
Parallel Random Number Generator
Noel J Loxton† Keenan Robinson‡ Mauro G Borrageiro§

EEE4120F Class of 2020
University of Cape Town

South Africa
†LXTNOE001 ‡RBNKEE001 §BRRMAU002

Abstract—The purpose of this paper is to investigate a
pseudo-random number generation technique known as Linear
Feedback Shift Registers (LFSR). This random number generator
is implemented using a standard serial program coded in C++

and subsequently produced in a hardware-accelerated version of
the algorithm, which would be run on a Field Programmable
Gate Array (FPGA), namely the NEXYS A7 Artix 100-t
from Digilent®. The latter is implemented using a form of
parallel programming in Verilog Code and simulation. The two
implementations are tested and compared to evaluate process
speed-up. Further details regarding statistical tests are given,
which are performed to ensure optimal performance of the
algorithm. The digital accelerated parallel implementation of the
LFSR random number generator produced random data-sets
with huge speed-ups compared to the Golden Standard. The
data-sets were acceptably random but their entropy needs to
be improved in order to widen the applications of this parallel
random number generator.

I. INTRODUCTION

The modern technological world relies on a number of tools,
algorithms and scientific knowledge to act as ground work for
new innovations and discoveries to advance into the future.
An appropriate tool used in a variety of different applications
of digital systems is the need for random numbers, more
specifically the random number generator (RNG).

The universe is a fairly unpredictable place and humans
have always had a desire to understand it better through
scientific understanding and the use of powerful tools such
as simulations and modern modelling technology.

To model the randomness on these systems, there needs to
be some technology, which can create ’randomness’. The idea
of ’randomness’ is fairly foreign to computer based systems,
which are entirely logic based, albeit, over time different
techniques have been developed to simulate the human idea
of randomness [1]. Producing sets of truly random numbers is
fairly simple however it is surprising that they do not hold
as much value as being able to produce randomness in a
controlled manner. To be more specific, it is better to be able
to produce randomness that can be understood and reproduced
yet seeming ’random’ to the user for the application it is being
applied to. This is called ”pseudo-randomness.”

For the purposes of this research, the Pseudo-Random
Number Generator (PRNG) that is being implemented is the
Linear Feedback Shift Register (LFSR). The reason for this
was due to its ability to maximise random number production
before repeating the sequence [2], which is a desirable aspect
among random number generators, hardware realisability,

which makes it easily reproducible on architecture systems
such as the Field Programmable Gate Array (FPGA) - the
hardware that will be used to produce a digitally accelerated
version of the LFSR PRNG.

With reference to the real world applications of these
pseudo-random numbers (PRNs), generally applications can
require extremely large amounts of PRNs to be produced at
a time, where serial implementations can start to produce
adverse effects on processing speeds. Thus, as a plausible
solution to this need, architectures that accommodate parallel
computation are used to produce the data required. The FPGA
can therefore be used to provide the hardware resources
to implement this design variation, although, it is limited
due to its size available circuit elements. For the purposes
of this research, a NEXYS A7 Artix 100-t FPGA board
from Digilent®was used to test the Parallel Random Number
Generator (PPRNG) produced in Verilog to compare to the
C++ serial version. This serial program will be the Golden
Standard.

The one aspect of the design is to initially produce PRNs on
the different architectures and, from observation, observe the
randomness of the outputs. The next step after this design is to
further improve the design to provide suitable random numbers
statistically, so that it provides good entropy in the values
being produced with a uniform distribution. This method is
often used to assess the quality of a PRNG [3].

II. BACKGROUND

A. True Random Number Generation versus Pseudo Random
Number Generation

There are two different ways random numbers are currently
produced in computing - true random number generation
(TRNG) and PRNG. The TRNG generator produces numbers
that are random in nature and have outputs that are
unpredictable. The generator simulate sources of entropy that
are random as in nature. Sources of entropy, for example,
are thermal noise, noise from electrical signals, shot noise,
atmospheric noise, radioactive decay or clock jitter [4]. So
to produce a complete model of these natural sources of
randomness is fairly straight forward and there are a number
of ways to implement these types of RNGs. However, there
are very limited applications of where these can be used
which brings up the PRNG. The PRNG produces sequences
of random numbers from a single seed value. The importance
of this is that the PRNG is deterministic, meaning that using

1



the same seed value in the same algorithm produces the
same data set of random numbers [1]. In computer systems
and particularly for experiments, this provides a better means
of comparing outputs since the experiment is repeatable.
Adjustments can then be made to compare to the same set of
random numbers. It is also found that PRNGs can be typically
more efficient overall, requiring fewer circuit elements, power,
area and they can often produce random numbers quicker than
TRNGs [1] [4].

B. Applications of PRNGs

These pseudo-random numbers are a powerful tool
in development of a variety of different fields such
as cryptography and Monte Carlo simulations [3]. In
cryptography it can be useful to randomise pieces of
information to serve as a means to protect data. In Monte
Carlo simulations, large sets of random numbers are used
as data to feed into the simulation. This is useful if one is
trying to model a system that uses a random phenomenon to
measure, recreate or re-purpose that system and/or its states.
Referring back to cryptography, the information is encrypted
by, to put it simply, randomising the information, and a key
is used to decrypt the data after it has been transferred over
a network. The encryption and decryption of the information
requires that it be randomised in a predictable manner, thus
the use of PRNGs [5].

For Monte Carlo simulations, very large amounts of random
numbers need to be produced depending on the type of
simulation. The Monte Carlo or random-sampling technique
makes use of repetitive simulation of a subject of study, for
example simulating conditions going from a point A to a point
B such as adjusting weather conditions or terrain. This requires
random numbers to be produced to adjust the variables in
the simulation [6]. These Monte Carlo simulations are often
executed repetitively depending on the simulation design and
subject matter, between thousands and millions of times over.
The benefit is that the faster these simulations execute, the
less time-consuming the process can be - more simulations
can provide more accurate results.

Random numbers are used in a wide range of different
applications that may also include spread-spectrum
communications [7], gaming, statistical analysis [8], modelling
[9] and many more.

C. Factors Assessing Quality of Random Numbers

There are a wide variety of different aspects to assess the
quality of a PRNG implementation, as there are many different
implementations that may have more favourable results for
one application, for example power consumption, execution
speed and overall spread of the random numbers. Some typical
performance measurement statistics include [10], [11]:

• The length of the period between repeating sequences of
random numbers. Most kinds of PRNGs make use of an
inputted seed value to calculate the first random number
(the next state) which will then cascade repeatedly to
produce the sequence of random numbers. However, the

sequence is not infinite and at some point when a number
already produced before in the sequence is reproduced
again, the sequence begins to repeat. The Mersenne
Twister, for example, has a maximum period of 219937-1.

• The ’randomness’ in the random numbers, usually
measured as a uniform probability distribution. A good
spread in the random values means that there is no
repeating of sequences or predictable behaviour of the
RNG.

• Execution speed, complexity and cost to produce the
algorithm used in PRNG. With a wide variety of
custom PRNGs available and some well-known ones,
there are often trade-offs in performance statistics of
different algorithms. For example, the Mersenne Twister
is considered to be a fast algorithm, not making use of
multiplication and division, however it is very complex
and costly to implement.

The correct algorithm should be chosen depending on the
application’s needs.

D. Serial versus Parallel Number Generation

The nature of random number generation is that large
amounts of data need to be produced, and depending on the
application, within a small amount of time. PRNGs work on
a very sequential process, using an input seed to generate
a random number, which is then repeated using a statistical
or mathematical variation on the number to produce the next
number or state. Some common PRNGs that make use of this
process include the Linear Congruential Generators (LCGs),
Mersenne Twister (MT), LFSRs and Multiple Recursive
Generators, such as L’Ecuyer’s MRG32k3a [12]. There is
a drive to develop parallel implementations of algorithms
such as the ones mentioned, however doing so increases the
overall complexity of the algorithm and potentially ruins the
overall random number generation quality. There are a number
of techniques that are commonly used in parallelisation of
these algorithms, including leapfrogging (Figure 2), sequence
splitting (Figure 3) [12] and random-tree (Figure 1). The
following figures illustrate these concepts [13].

In each element of the diagrams, random number generation
is split amongst separate processors. The random tree
implementation replicates the same process or algorithm
but produces multiple outputs of the same value on each
iteration. The leapfrog technique takes the same algorithm,
splits it among separate independent processing elements
and generates the random numbers. Each processor produces

Fig. 1: Random tree technique for parallelisation

2



Fig. 2: Leapfrog technique for parallelisation

Fig. 3: Sequence splitting technique for parallelisation

a random number in a specific location in the sequence.
Sequence splitting is similar to leapfrogging, however multiple
numbers are produced sequentially at a time. Once these
techniques are completed, the sequence can be reconstructed
by combining the processor outputs. The issue with these
parallelisation techniques is that there needs to be some way
to predict the next number or state in the sequence, or better
yet any number in the sequence, which drastically increases
complexity. The mathematics behind these algorithms is
non-trivial to say the least.

E. Linear Feedback Shift Register RNG

The LFSR is a common type of RNG that uses shift
properties to randomise bits within a number. The LFSR
makes use of exclusive-or (XOR) gates and shift registers,
which makes this method suitably realisable on hardware
based architectures, such as an FPGA [2]. The operation of
the LFSR calculates the next state, according to Figure 4 and
is described, in detail, below.

With reference to Figure 4, if the value of the least
significant bit (LSB) is one, then the LFSR will perform a

Fig. 4: LFSR operation block diagram

shift right where the LSB becomes the most significant bit
(MSB) and effectively the bits in the location described by
the feedback polynomial (see equation 2) will be inverted. If
the LSB is zero, then the operation is performed as described
previously, however it does not perform the inversion. There
are two versions of the LFSR, the Fibonacci and the Galois
implementations [14]. Both are very similar except that the
Galois can perform multiple XORs at once, making it better
for parallel applications [14].

The major element of the LFSR is that it produces a large
period between repeating sequences of numbers, with good
uniform distribution of the random number numbers over
its sequence. The period is determined by the size, more
specifically the number of bits, of the input number it is
designed to accept. To maximise the period, XOR gates are
placed at specific locations in the LFSR and are defined by
what as known as the maximum feedback polynomial. The
following example is a maximum feedback polynomial for a
16-bit LFSR [2].

X16 +X14 +X13 +X11 + 1 (1)

The exponents define the locations of the XOR gates that
are used in the feedback of the LFSR. An illustration of this
can be seen in Section IV, Figure 6 for a 32-bit feedback
polynomial.

III. METHODOLOGY

A. Hardware

Before the design can be implemented, it was important to
note the available hardware. The computer used to run the
C++ code as well as the Verilog code is a laptop computer
consisting of the following specifications:

• Intel®CoreTM i7-6500 @ 2.50GHz quad core CPU
• Windows 64-bit operating system
• 8GB RAM with 7.71 GB usable memory
• 250GB HDD with 231 GB usable storage
The FGPA that would be used to run the parallel

implementation is the Nexys A-7 Artix 100t board from
Digilent®with the following specs.

• 15,850 logic slices, each with four 6-input LUTs and 8
flip-flops.

• 4,860 Kbits of fast block RAM.
• 6 clock management tiles, each with phase-locked loop

(PLL)
• Internal clock speeds exceeding 450MHz
• 128 MiB DDR2 Serial Flash

B. Experimental Procedure

The design cycle of the project followed a format based on
the pattern provided in Figure 5.

The design process was based on a waterfall model, with
a fall back onto redesigning and prototyping to accommodate
for unforeseen design flaws.

From analysis of the project description, the following
specifications were drawn:

3



Fig. 5: Design cycle of the project

• The PPRNG should produce N random numbers in one
go.

• The random numbers produced should range between 0
to 232-1.

• The random numbers need to be stored in RAM, which
can be accessible to a soft-core processor.

• Inputs to the system are: unsigned seed, unsigned start
address, unsigned count (i.e. the number of random
numbers to generate), bit activate.

• Outputs of the system are: ”bit busy” and the random
numbers stored in RAM.

The next step was to determine the RNG to use and
adapt to a parallel implementation. The factors that influenced
the decision-making process were based on the following
factors: hardware realisibility, simplicity, large period between
repeating sequences, low hardware resource consumption and
ability to create a parallel version. It was important to be
hardware realisable so that it could be implemented on the
FPGA in a straight forward manner, as it was hypothesized that
increased complexity on hardware architectures can increase
power consumption, hardware resources and difficulty in
producing the alogrithm.

Once a preferred algorithm was selected, the serial
implementation was then produced and established as a
Golden Measure.

The implementation was then produced based on the Golden
Measure in Verilog. Once a working implementation was
created, the parallel aspects could then be designed, which
needed to incorporate the specifications detailed at the start
of the project development. This stage required an iterative
stage of redesigning of the project implementation, including
the Golden Measure.

Finally, once suitable outputs were being produced,
the system could then be tested. This includes analysing
execution speeds, recording speedup or slowdown as well

as performing some basic statistical tests on the output of
the captured data between the two implementations. The
execution speeds are used to determine the speed-up between
the implementations, so that a comparison between a serial
and parallel implementation can be made. The results of
the experimentation will, potentially, support the use of this
designed parallel implementation.

In terms of measuring the speed of the implementations,
this was measured using libraries provided in C++ to record
the wall clock time taken to execute the algorithm, while for
Verilog the simulation provides the estimated execution times
and these were sufficient for comparisons.

The final steps were to perform maintenance and final
adjustments of the project to finalise the product design.

IV. DESIGN

A. 32-bit LFSR Design

The design of the LFSR makes use of shift registers and
exclusive-OR (XOR) gates to randomise an inputted seed
value. The input seed is stored in the shift registers, where
specifically selected bit positions in the seed are fed to an
XOR gate. The positions of these XOR gates are critical
in developing the maximum sequence of random numbers
that can be generated by this seed, where these positions are
defined by what is known as the feedback polynomial [2]. The
maximum period achievable by this LFSR design is 232-1,
meaning that 4 294 967 295 numbers can be produced before
the sequence repeats. The maximum feedback polynomial to
achieve this with a 32-bit number is defined in Equation 2
below.

X32 +X22 +X2 +X1 + 1 (2)

Where 32, 22, 2 and 1 define the locations of the XOR
gates. The following block diagram in Figure 6 illustrates the
concept.

Fig. 6: 32-bit LFSR design using shift registers and XOR
according to the feedback polynomial

This design for the LFSR is then emulated on the serial,
C++ implementation for the Golden Measure and then adapted
for a parallel implementation, where multiple LFSR units are
created and run.

B. Serial implementation (Golden measure)

The implementation provided is based on the Galois LFSR
[14] but has been adapted for the parallel seeding (see
Section IV-C for details on this). To produce the program,
Code::Blocks was used along with the GCC Compiler for
Windows 10.

The code segment provided in Listing 1. provides the code
used in generating the random numbers.

4



unsigned lfsr_galois(void)
do

{
//Output current seed based on period
separate_seed = start_seed + 314159265*period;

lfsr = separate_seed;
unsigned lsb = lfsr & 1; /* Get LSB (i.e., the output bit). */

lfsr >>= 1; /* Shift register */
if (lsb) /* If the output bit is 1, */

lfsr ˆ= 0x80200003; /* apply toggle mask:
0b10000000001000000000000000000011 */

/* this relates the 32-bit Maximum Feedback
polynomial.*/
/* ˆ is an XOR operation. */

for (int i = 0; i < 32; i++) //for displaying the number as a string
{

s[31 - i] = (lfsr & (1 << i)) ? '1' : '0';
}

printf("%u\n", lfsr);

//Writing to memory
memory[period] = lfsr;
period++;

}

while (period != numbers);
{

gettimeofday(&end, 0);
long seconds = end.tv_sec - begin.tv_sec;
long microseconds = end.tv_usec - begin.tv_usec;
printf("Time measured: %.3f microseconds.\n", seconds*1e6 + microseconds);
//
return period;

}

Listing 1. Serial implementation of the LFSR to produce random numbers
sequentially

The code is inherently sequential, where each number or
state is produced after the previous number has been produced.
The adjustment made to the algorithm was the incorporation
of parallel seeding. For each iteration the initial seed that
is inputted to the system is altered by adding a multiple
of a number that was arbitrarily chosen. This was used to
produce the parallel implementation, where more details for
the reasoning of this design choice is described in Section
IV-C. For an understanding of how the code works, it uses
the same process detailed in Figure 4 to randomise the input
seed.

The output of this code for four random numbers with an
initial seed value of 3429426846, produced the following:

1714713423
4021373852
2028872688
2188049475
Time measured: 998.000 microseconds.

The time is measured using the sys/time.h library to provide
the time it takes to execute the program in real time. To ensure
minimal overhead in recording the time, it is recorded at the
start of the function that generates the random numbers and
ends before the function returns a value, signifying it has
ended.

The only change that will be implemented in the code
during testing is the aspect of writing to memory. For this
implementation, memory is just defined to be an array to which
the random numbers are written. This will be removed in tests
to compare speeds of the different implementations without
memory to examine the performance only of the algorithm
itself, or kept in for performance comparison including the

time to write to memory. Thus if a host program was to make
use of this implementation, it would just need to be able to
access that array address to read values from it.

C. Parallel Implementation (Verilog Measure)

The parallel measure was broken down into smaller building
blocks which could later be combined to hopefully produce the
desired result.

The first building block consisted of producing a serial
LFSR in Verilog where an implementation was altered from
[15] to produce a version that would work for the designed
scenario. The LFSR Verilog code can be found in Listing 2.
IV-C, this code was combined with other building blocks to
produce the parallel implementation.

An important step in designing the parallel implementation
of the LFSR in Verilog included the use of ’For-loops’.
’For-loops’ do not behave in the same fashion as those in
regular programming as they simply replicate the code i times
instead of looping through the code i times at synthesis time.
This proved an efficient way to produce multiple LFSRs that
operated all together at the positive edge of the clock. It
was found through debugging an error that a maximum of
fifteen LFSRs could be run per clock cycle, thus limiting
the maximum loop iteration to fifteen, which also means
fifteen random numbers per clock cycle. Therefore, the design
specifications need to change as not all the numbers can be
produced at the same time.

In between developing the serial and parallel versions of the
RNG an issue was encountered with regards to the seeding of
the parallel version of the RNG. The issue being to generate
the same random number set as the serial implementation.
Due to the relationship between consecutive random numbers
in the serial implementation, the random number from the
previous LFSR operation is used as the seed for the next
random number. For the parallel version to produce the same
random number set as that of the serial measure, it would
require a predictive method capable of producing n required
seeds for the individual LFSRs all at once. This described
operation was felt to be out of the scope of the project and
adaptive measures were taken to alter the algorithm.

The adapted method was to increment each seed in a
predictive manner. Using the ’For-loop’, the current iteration
index of the ’For-loop’ i.e. (int i) will be used to increment
the seed thus providing each LFSR with a unique seed.

A concern from this previous seed incrimination method
was the quality of the randomness of the numbers produced.
This concern was realised as the variation in numbers produced
was poor since consecutive numbers only varied by a few
units.

In an attempt to resolve this, the iteration index of the
’For-loop’ was multiplied by different sized numbers. The
number was chosen arbitrarily through an iterative process
where the randomness of the resulting random numbers was
considered due to the chosen multiplier. The multiplier ranged
from 1 to 9-digit numbers, it was stopped at 9-digits as
Vivado limited it as such. Multiple 9-digit numbers were

5



shiftVal = seed + checkN*314159265; // Make each seed unique
shiftVal = {shiftVal[0],shiftVal[31:1]};
//concatenate lsb to msb - essentially an arithmetic shift right
if (shiftVal[31])begin //check value of lsb of seed
shiftVal = shiftVal ˆ 32'b00000000001000000000000000000011;

//apply bitmask (based on optimal values to XOR of 32 bit number)
//essentially XOR the values at bit-positions 1, 2 and 22

Listing 2. Snippet of the LFSR Verilog implementation showing the coded
process to produce a psuedo random number with an LFSR

tested, however, it was settled on the first 9 digits of π as
the results showed a reasonable standard of randomness from
initial observations.

The Random Access Memory (RAM) aspect of the project
was implemented through Block RAM (BRAM) IP core
functionalities located on the FPGA device. The different
settings of the BRAM IP were looked up in the datasheet
to decide on which functionalities would suit the application
best. The BRAM was chosen to be set-up in ”True-Dual Port
Fashion” allowing simultaneous write and read to the allocated
BRAM through two ports thus halving the write and read time.
The code to write to memory with a given starting address is
given in Listing 3 IV-C. The maximum amount of random
numbers that could be stored on the FPGA was calculated to
be as follows with a given BRAM memory size of 64kB:

64× 103 × 8 bits

32 bits
= 16000 randomnumbers. (3)

The aforementioned components of the parallel design were
integrated together to produce the final design of the Verilog
implementation. The block diagram in Figure 7 shows the
interfacing between the top module and BRAM as well as their
respective inputs and outputs. There is also ”hand-shaking”
(acknowledgment between communicating modules in an
integrated computer structure) shown with certain registers
associated with inputs to the BRAM module.

Fig. 7: Verilog Block diagram showing interfacing between
top module and BRAM final design

V. PROPOSED DEVELOPMENT STRATEGY

The main advantage of using PPRNGs over sequential
predecessors is the inherent speedup. The increase in
computing power and availability of larger amounts of

if((countB == n))begin //When A and B address at their max, i.e Done
r_busy <= 0;
r_readReady <=1; //ready to read
countA <= 10'b0; //reset counts for read operation
countB <= (n>>1);

end
else if(!r_busy && r_prngDone)begin

countA <= 10'b0; //Port A starts at the lowest address
countB <= (n>>1); //Port B starts at half way from the maximum
r_busy <= 1; //Busy sending data to memory.

end
else begin

addra <= countA + startAddr; //Move first half of array to BRAM + start address
addrb <= countB + startAddr; //Move second half of array to BRAM + start address
dina <= array[countA]; //Add data at the current A address to dina
dinb <= array[countB]; //Add data at the current B address to dinb
countA <=countA +1; //Increment A address
countB <=countB +1; //Increment B address

end

Listing 3. Verilog logic for writing to BRAM given a start address and
n random numbers, this is located in an always block and is clocked on
the positive clock edge when it is needed.

resources on smaller area chips is providing the ability to
make use of parallel computing techniques to complete tasks.
Particular applications that would benefit greatly from this
speedup are Monte Carlo simulations. Monte Carlo simulation
is a tool used in a variety of different applications such
as probability simulation and forecasting models [16]. These
simulations can provide a large amount of information relating
to the system it is applied to, for example risk analysis and
prediction. It works on the principle of when the system is
modelled, it can be executed with variations thousands of
times over to provide very accurate results in order to draw
trustworthy predictions [16]. Having a digital accelerator that
is capable of delivering random numbers that are fed into the
simulation at greater speeds due to the reduced latency in
producing those numbers greatly improves the rate at which
these Monte Carlo simulations can be run, allowing for more
executions in a given time period for increased number of
results. The amount of random numbers varies according to
the application, but sources often quote values higher than
1010 and sometime values even larger than that [17].

For the purposes of this project, the FPGA can suitably
produce large amounts of random numbers to be transmitted
to the application making use of the Monte Carlo simulation.
With a few design alterations, such as including more RAM
to store more random numbers, the FPGA could provide
a suitable means to generate random numbers in a small
amount of time, so long as the reading from the BRAM does
not cause significant overhead. The dual port nature of the
BRAM can also facilitate parallel reading of numbers to the
application. The next step in the project is to expand on the
ability of the PPRNG developed to utilise more of the FPGA
that is available, if the application it is applied to does not
require excessive amounts of the FPGA’s resources for its own
processing.

There are additional fields that could be explored to utilise
the product developed. One particularly notable field is the use
of LFSR in fault grading of Application Specific Integrated
Circuit (ASIC) design. Designers and engineers can use
these for a high level fault coverage of ASIC designs with
minimal effort to test the circuitry [18]. This works by
connecting the bits of the LFSR to inputs of the ASICs, where

6



the LFSR can then be run repeatedly to examine outputs
of ASIC circuits [18]. Due to the very large sequence of
random numbers produced by the LFSR, it produces all the
necessary combinations of inputs to examine if all the outputs
produce the correct results. For this product, the parallel
implementation would be able to provide more connections
for ASIC testing. The numbers stored in BRAM could be
read to identify the pattern of the bits used to test specific
inputs of the ASICs for the error analysis. The limitation in
the current design would be the input-output (I/O) connections
of the FPGA, which are limited especially for the NEXYS
A7 Artix 100-t, but the ability for additional LFSRs produced
on a single device for testing of ASIC designs presents a
considerable area of application for this product.

VI. PLANNED EXPERIMENTATION

This section will detail how the results will be obtained
for the project. There were two separate programs coded, as
mentioned previously, a golden standard coded in C++ and an
equivalent parallel version coded in Verilog. The code will be
tested and compared with the following experimentation.

All results will be tabulated and graphed. They are all shown
in the results section (see Section VII below).

A. Golden Standard

The C++ program was coded with a wallclock method for
timing as seen in Listing 1 IV-B to allow random numbers
to be generated along with the time taken to generate that
sequence on the processor. The timing will be calculated as
the time it takes to generate the random numbers and write
them to memory (memory being a pre-sized array). The code
will be tested to extract the following two relationships in
the random data: firstly the relationship between the varying
seed and the time taken to generate random numbers and
secondly to find the relationship between the time taken to
generate random numbers versus the quantity of numbers
being generated. These two tests will be run concurrently by
increasing the quantity of numbers generated for one seed and
then varying the seed and running the same test of increasing
the quantity of numbers to generate for each seed. There will
be five different seeds that will be tested and these are shown
in list VI-A.

1) 123456
2) 654321
3) 1
4) 3429426846
5) 6386547
These seeds were randomly chosen with the following

objectives in mind:
• Test 1-bit sized seed
• Test 32-bit sized seed
• Test seed with unequal bits
• Test seed with incrementing bits
• Test seed with decrementing bits
• Test arbitrary seed

The tests will be run ten times and then averaged out to
give a more balanced set of results.

The quantity of numbers to generate with the number
generator is shown in list VI-A. The number will be increased
in powers of 10 starting at 1 until the maximum size of the
BRAM is reached. The maximum number of 32-bit numbers
which can be stored was calculated as 16 000 (refer to equation
IV-C) and thus this will be the maximum number of random
numbers, which will be generated.

• 1
• 10
• 100
• 1 000
• 10 000
• 16 000

B. Parallel Program

The parallel program was coded to be identical in outputs to
the golden standard (see section IV on code implementation),
therefore the exact same set of tests will be conducted on the
Verilog program as was performed on the C program. The
Verilog code is all based on clock cycles in simulation and
thus it is assumed that the seed will not impact time and
as such only one seed will need to be tested. Two of the
seeds will be tested to confirm/contradict this assumption. The
Verilog code will be tested, as previously mentioned but will
also incorporate timing of generating the random numbers as
well as timing the results being written to memory - where
the C++ code was only timed after writing to memory. This
will be done to give an idea of how long the program takes
for number generation versus writing to BRAM.

C. Comparison

To compare the results from the two programs, the speedup
for results will be calculated using equation 4. Before speedup
is calculated, the mean value of all the speeds of each seeded
test will be calculated with respect to N. This average will
then be used to calculate speedup of the C++ Golden Standard
over the parallel Verilog implementation.

speedup =
Tp1
Tp2

(4)

D. Statistical Analysis

The last test to be done is to verify the entropy of the data
produced by the random number generator i.e. how ’random’
the numbers are. This will be done by producing 1000
numbers with the Golden Standard with an arbitrary input seed
(5462994) and then producing another set of 1000 numbers
with the original galois Serial LFSR number generator in C++.
These two sets of results will be graphed and compared to
analyse the entropy of the LFSR parallel implementation.

VII. RESULTS

The results for the tests that we performed on both the
Golden Measure and Parallel implementation are shown and
discussed in the following section.

7



A. C++ Golden Standard

The tests discussed in Section VI were performed and are
shown in table I. There is a clear increase in the speed taken
to generate numbers with the increase seeming quite linear
i.e. 10x increase in quantity relates to a 10x increase in
time taken but this can be seen better in figure 8 where the
linear relationship between the quantity of random numbers
generated and the time taken can be seen up until ten thousand
numbers generated where the time starts to stabilise and the
relationship is no longer linear. It is also obvious from the
graph that the seed has little impact on the time taken and
all seeds produce a similar result in time. The input seed 1,
however, produces the largest variation in speed clearly taking
longer than the other input seeds, which all have very similar
times.

TABLE I: Table for the average time taken to generate
increasing quantities of random numbers with varying input
seeds for the C++ implementation of the LFSR random
number generator

Time (s) with specific input seed
Quantity of Random Numbers Generated (N) 1 3429426846 123456 654321 6386547
1 9.960E-5 9.960E-5 2.991E-4 9.720E-5 9.920E-5
10 9.775E-4 1.194E-3 1.590E-3 1.792E-3 1.687E-3
100 5.934E-2 6.444E-2 7.046E-2 7.046E-2 6.971E-2
1000 7.770E-1 7.802E-1 7.242E-1 7.388E-1 7.688E-1
10000 6.823E0 6.654E0 6.201E0 6.432E0 6.662E0
16000 7.613E0 7.074E0 6.919E0 7.142E0 6.857E0

Fig. 8: Graph showing the relationship between time taken
versus quantities of random numbers produced for different
input seeds for the C++ implementation

B. Verilog Parallel Implementation

The results of testing the Verilog program are tabulated in
II showing a linear increase in the time taken to generate
random numbers as N is increased. This result is once again
best seen on the graph shown in figure 9 where there is a
directly proportional relationship of the time taken to produce
N numbers. The other important result to note is that as
N increases, the time taken to store the numbers in BRAM
increases drastically as would, intuitively, be expected.

The input seed, as expected, made no difference on the time
and as such only one seed test was run and is shown below.

It was important to note that during the test, the Verilog
implementation was unable to produce more than 15 numbers
in a single clock cycle.

TABLE II: Table showing the average time taken to generate
increasing quantities of random numbers with two program
variations. One variation was generating the numbers and
printing them to the output console, the other variation
generated the numbers and wrote them to BRAM. This is
for the Verilog implementation of the LFSR random number
generator

Time (s) for generating random numbers and writing to memory
Quantity of Random Numbers Generated (N) Generating Numbers Generating and writing to BRAM
1 1.00E-8 3.00E-8
10 1.00E-8 7.00E-8
100 7.00E-8 5.80E-7
1 000 6.70E-7 5.68E-6
10 000 6.67E-6 5.67E-5
16 000 1.07E-5 9.07E-5

Fig. 9: Graph showing the relationship between time taken
versus quantities of random numbers produced for generating
random numbers and writing to BRAM for the Verilog
program

C. Serial versus Parallel

The table showing the speedup of the serial program over
the parallel program by using equation 4 with respect to N
is shown in table III. The results show that as N increases
the speedup increases to a very large degree up until 10 000
numbers where it still increases but by a smaller factor than
before. The relationship can be seen in figure 10 where there
is a huge increase seen up until 10 000 numbers produced
where the speedup begins to plateau and then decrease at 16
000 numbers. There is still a significant speedup observed even
if it is not as large as the smaller data-sets.

TABLE III: The speedup of the Golden Measure over the
Parallel implementation as N is increased. This metric includes
the time taken to write to memory for both programs.

Quantity of Random Numbers Generated (N) Speedup
1 4.63E3
10 2.07E4
100 1.15E5
1 000 1.33E5
10 000 1.16E5
16 000 7.85E4

8



Fig. 10: Graph showing the speedup of the Golden Standard
over the Parallel program as N is increased

D. Statistical Analysis

The data-sets of two separately generated random number
generators are graphed in figure 11. It can be noted that
the Galois LFSR produces far better results as there is no
pattern noticeable in the graph - it closely resembles a random
noise process. The bottom graph however, even while showing
different numbers that are considered ’random’, shows a
clearly predictable pattern on the graph.

The numbers generated in both the serial and parallel
implementations, were all unsigned decimals (non-negative)
and were no larger than 4 294 967 295. The maximum number
that was generated across all the tests performed ended up
being 4 293 237 909, though this is not to say that the
algorithm is not capable of reaching the maximum value
but rather that the tests performed did not generate enough
numbers to produce a single result that was the maximum.

Fig. 11: Two graphs showing 1000 seperately generated
random number sets. The top graph is the Galois serial LFSR
and the bottom graph is the edited LFSR that was used as a
golden measure against the verilog parallel implementation

E. Discussion

The results yielded from testing the digital accelerated
version of an LFSR random number generator implemented

in parallel showed three key points:

• The parallel version of the RNG is far more efficient in
terms of producing random numbers - yielding a speedup
of up to 133 000 when 1000 numbers were produced and
even though the speedup was not as large at the maximum
storage value, a speedup of 78 540 was achieved when
16 000 numbers were produced. The FPGA is optimised
for parallel programming [19] and this can be directly
seen with the vast speedup results achieved with the
Verilog implementation. The processor on the PC has to
wait for the (n-1)th number to be produced in the serial
version before it can produce the nth number. The speed
is, as a result, very slow in the golden standard especially
for large number sets where it takes several seconds to
produce the data-set when the parallel version takes less
than a millisecond.

• The seed has little to no impact on the speed of
the program in both implementations, especially in
the digitally accelerated parallel program, where it has
absolutely no impact on program speed. The LFSR works
with bit operations. It checks the value of the LSB after
shiting it. The LFSR is therefore performing the same
operation regardless of the value of the bit (the bit has
value 1 or 0). As a result, the seed should not impact
the speed of the RNG. The results agreed with this
hypothesis.

• The LFSR algorithm used to produce the sets of random
numbers, although consistent in producing random
numbers and producing the exact same sets of numbers
for the serial and parallel programs, does not produce a
good entropy i.e. the randomness of the sets of numbers.
This is because there is a slight pattern to the numbers
produced even if it is not immediately visible when
observing the numbers. The Galois LFSR has limits in
its applications because of the fact that it is predictable.
The method is the same for all applications unless the
feedback polynomial has been changed, which affects the
statistical quality of the output of the LFSR. Therefore,
it is safe to assume that very few applications would
change this. The variation made to the LFSR in order to
parallelize the program made this even more predictable
in its patterns. For the purpose of producing random sets
of numbers, this random number generator is sufficient. In
terms of applying this generator to real-life programming
applications, this LFSR iteration is quite limited.

The LFSR could be improved by finding a better way
to randomise the input seeds - this is fundamentally the
issue with the LFSR implemented throughout this experiment
and ultimately one of the biggest concerns facing parallel
random number generators - how does one randomise the
seeds to get multiple predictive and repeatable input seeds
from one seed? One of the ways to get around this problem
- instead of randomising the seed one can implement a form
of ”Leap-frogging” to the parallel LFSR implementation. The
maths behind this is complex and difficult to implement in

9



programming but would be one of the ways to go about fixing
the entropy of the generated data-sets. If this was achieved, the
results would resemble the Galois LFSR results shown in 11.
The parallelisation in every other aspect can be considered a
success because of the fact that the parallel version produced
repeatable and very large data sets of numbers, which are
sufficiently random, in a parallel manner and in a hugely
accelerated version when compared to the golden standard.

The specification for the parallel version of the LFSR PPNG
was changed to accommodate the fact that only fifteen random
numbers could be produced per clock cycle when the original
specification was to produce all numbers ”at once”. This
limitation is potentially a result of the Vivado simulation and
further testing would need to be performed to fix this fault
if more than fifteen random numbers should be produced
in one clock cycle. This fault was however acceptable since
the parallel version achieved huge speedups over the golden
standard even with the limitation of fifteen numbers per clock
cycle.

VIII. CONCLUSION

An LFSR serial random number generator was successfully
implemented in a C++ Golden Standard and run on a
laptop processor. This same algorithim was then applied
and implemented through Verilog code to be run on an
FPGA board. The digitally accelerated version of the random
number generator yielded large speedups up to 78 540 for the
largest data-set. The parallel code met all specifications with
successful implementations of address, count and bit activate
inputs. The only shortcomings of the parallelised code were
the predictability or lack of entropy in the data-sets produced
as well as that the PPRNG could not produce more than
fifteen numbers in one go. The original Galois LFSR C++ serial
program gave far better results than the edited parallel version
in terms of predictability and randomness. This drawback
highly impacts the usefulness of this program, limiting it to be
mostly used for Monte Carlo simulations or fault checking in
ASIC design rather than cryptography. The digital accelerator
in the form of a parallel random number generator did however
yield acceptable results with the data-sets being, practically
considered, ’random’.

Link to GitHub:Verilog and C++ Code Repository

REFERENCES

[1] “Pseudo random number generator (prng),” Sep
2019. [Online]. Available: https://www.geeksforgeeks.org/
pseudo-random-number-generator-prng/

Fig. 12: pew pew

[2] A. K. Panda, P. Rajput, and B. Shukla, “FPGA Implementation of 8, 16
and 32 Bit LFSR with Maximum Length Feedback Polynomial using
VHDL,” in IEEE International Conference on Communication Systems
and Network, vol. 2. IEEE, May 2012, pp. 769 – 773.

[3] P. L’Ecuyer, Handbooks in Operations Research and Management
Science: Simulation, Chapter 3 Uniform Random Number Generation,
1st ed. Elsevier Science, 2006, vol. 13, p. 55–81.

[4] A. Yadav, “Design and analysis of digital true random number
generator,” 2013. [Online]. Available: https://core.ac.uk/download/pdf/
51290139.pdf

[5] R. Soorat, K. Madhuri, and A. Vudayagiri, “Random number generator
for cryptography,” Nanosystems: Physics, Chemistry, Mathematics, p.
600–605, Oct 2017.

[6] “Monte carlo methods in practice,” Apr
2015. [Online]. Available: https://www.scratchapixel.
com/lessons/mathematics-physics-for-computer-graphics/
monte-carlo-methods-in-practice

[7] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum
communications - a tutorial,” IEEE Transactions on Communications,
vol. 30, no. 5, p. 855–884, 1982.

[8] M. Nazarathy, S. Newton, R. Giffard, D. Moberly, F. Sischka, W. Trutna,
and S. Foster, “Real-time long range complementary correlation optical
time domain reflectometer,” Journal of Lightwave Technology, vol. 7,
no. 1, p. 24–38, 1989.

[9] G. Jandaghi, A. Gaeini, and A. Mirghadri, “A general evaluation pattern
for pseudo random number generators,” Trends in Applied Sciences
Research, vol. 10, no. 5, p. 231–244, 2015.

[10] F. James and L. Moneta, “Review of high-quality random number
generators,” Computing and Software for Big Science, vol. 4, no. 1,
2020.

[11] M. Matsumoto and T. Nishimura, “Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator,” ACM Transactions on Modeling and Computer Simulation,
vol. 8, no. 1, p. 3–30, 1998.

[12] T. Bradley, J. D. Toit, R. Tong, M. Giles, and P. Woodhams,
“Parallelization techniques for random number generators,” GPU
Computing Gems Emerald Edition, p. 231–246, 2011.

[13] Math for Game Programmers: Parallel Random Number Generation.
Game Developer’s Conference, May 2018. [Online]. Available:
https://www.youtube.com/watch?v=qO8FAQvlgX0

[14] “Linear-feedback shift register,” Jun 2020. [Online]. Available:
Linear-feedbackshiftregister

[15] NANDLand, “Lfsr in an fpga - vhdl amp; verilog
code.” [Online]. Available: https://www.nandland.com/vhdl/modules/
lfsr-linear-feedback-shift-register.html

[16] “What is monte carlo simulation?” [Online].
Available: https://www.riskamp.com/files/RiskAMP%20-%20Monte%
20Carlo%20Simulation.pdf

[17] H. Bauke and S. Mertens, “Random numbers for large-scale distributed
monte carlo simulations,” Physical Review E, vol. 75, no. 6, Apr 2007.

[18] What’s an LFSR? Texas Instruments, 1996. [Online]. Available:
https://www.ti.com/lit/an/scta036a/scta036a.pdf

[19] D. C. Marinescu, “Parallel hardware,” 2013. [Online]. Available: https:
//www.sciencedirect.com/topics/computer-science/parallel-hardware

https://github.com/MBorrageiro/Yoda
https://www.geeksforgeeks.org/pseudo-random-number-generator-prng/
https://www.geeksforgeeks.org/pseudo-random-number-generator-prng/
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.researchgate.net/publication/236109080_FPGA_Implementation_of_8_16_and_32_Bit_LFSR_with_Maximum_Length_Feedback_Polynomial_using_VHDL
https://www.researchgate.net/publication/236109080_FPGA_Implementation_of_8_16_and_32_Bit_LFSR_with_Maximum_Length_Feedback_Polynomial_using_VHDL
https://www.researchgate.net/publication/236109080_FPGA_Implementation_of_8_16_and_32_Bit_LFSR_with_Maximum_Length_Feedback_Polynomial_using_VHDL
https://www.researchgate.net/publication/285266017_Random_number_generation
https://www.researchgate.net/publication/285266017_Random_number_generation
https://core.ac.uk/download/pdf/51290139.pdf
https://core.ac.uk/download/pdf/51290139.pdf
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
https://www.youtube.com/watch?v=qO8FAQvlgX0
Linear-feedback shift register
https://www.nandland.com/vhdl/modules/lfsr-linear-feedback-shift-register.html
https://www.nandland.com/vhdl/modules/lfsr-linear-feedback-shift-register.html
https://www.riskamp.com/files/RiskAMP%20-%20Monte%20Carlo%20Simulation.pdf
https://www.riskamp.com/files/RiskAMP%20-%20Monte%20Carlo%20Simulation.pdf
https://www.ti.com/lit/an/scta036a/scta036a.pdf
https://www.sciencedirect.com/topics/computer-science/parallel-hardware
https://www.sciencedirect.com/topics/computer-science/parallel-hardware

	Introduction
	Background
	True Random Number Generation versus Pseudo Random Number Generation
	Applications of PRNGs
	Factors Assessing Quality of Random Numbers
	Serial versus Parallel Number Generation
	Linear Feedback Shift Register RNG

	Methodology
	Hardware
	Experimental Procedure

	Design
	32-bit LFSR Design
	Serial implementation (Golden measure)
	Parallel Implementation (Verilog Measure)

	Proposed Development Strategy
	Planned Experimentation
	Golden Standard
	Parallel Program
	Comparison
	Statistical Analysis

	Results
	C++ Golden Standard
	Verilog Parallel Implementation
	Serial versus Parallel
	Statistical Analysis
	Discussion

	Conclusion
	References

