
Lane Exit Identification and Alert (LEIA)
Real-time Lane Detection on an FPGA

Samantha Ball and Jason Pilbrough
Department of Electrical Engineering

University of Cape Town
South Africa

12 June 2020

Abstract—This paper aims to develop an embedded vision
prototype to detect road lanes and markings in real-time.
The computational complexity of lane detection is a significant
barrier for real-time detection on traditional CPUs. A FPGA
based architecture is presented to address this bottleneck by
accelerating the image processing pipeline. Such a system has
application in the field of autonomous vehicles and could form
part of a Lane Keep Assist System (LKAS) or a larger Advanced
Driver Assistance System (ADAS). The proposed design utilised
the Hough Transform for straight line detection and was
successfully implemented on the FPGA. A working hardware
prototype was developed and achieved a processing time of less
than 23.1 ms for each frame, sufficient for real-time application
at 43.3 fps. This resulted in a speedup of 10.1 over an equivalent
software implementation. The prototype was also able to correctly
predict lane departures by analysing the slope of the detected lane
markings in the image to identify when the vehicle was about to
drift into a neighbouring lane. The robustness of the hardware
design was demonstrated by testing the prototype at night in
difficult conditions.

I. INTRODUCTION

Autonomous vehicles are poised to radically disrupt the
automotive industry. The present system of automotive
transportation is prone to collisions and casualties, causing
millions of people to lose their lives in avoidable accidents
every year. Advances in computing and sensor technologies
have paved the way for intelligent vehicles to solve this
problem. Innovation is the field is currently begin driven by
tech-giants like Tesla, Google, and Uber who are investing
substantial resources into this technology.

This paper focuses on a particular form of driver assistance
known as lane keep assistance and lane departure warning.
In this contribution, we present a FPGA prototype that could
be used to alert the driver when their vehicle is about to drift
into a neighbouring lane. The idea is to use a forward facing
camera to provide monocular vision of the road in front
of the vehicle. The proposed system will use this vision to
detect lane markings on the road using the Hough Transform
for straight line detection. This type of driver assistance relies
on rapid processing speeds and low latency to provide timely
feedback to the driver. General CPUs may lack the required
processing resources to meet this performance demand.
On the other hand, FPGAs are well suited to the task of

high-speed video/image processing and could meet the strict
demands on performance. The inherent parallelism of the
proposed image processing pipeline is also well suited to
benefit from the hardware acceleration provided by an FPGA.
In addition, the lower power consumption and smaller size
make an FPGA suitable to be embedded in a larger Advanced
Driver Assistance System.

A few different approaches have been proposed for lane
detection in related work. McCall et al. [1] used steerable
filters to detect road markings using the VioLET system.
Risack et al. [2] proposed a lane state model to provide
lane detection and to monitor estimation performance.
Hajjouji et al. [3] used an adapted version of the Hough
Transform to detect lane markings with less memory overhead.

This paper is organised as follows: Chapter 2 develops
the theory behind image and video processing. Chapter
3 presents an overview of our approach to the problem
including the proposed image processing pipeline and testing
and validation strategies. Chapter 4 provides the detailed
design of the system. Chapters 5 and 6 contain a proposed
development and experimentation strategy. The performance
of the prototype is detailed in Chapter 7 before conclusions
are made in Chapter 8.

II. BACKGROUND AND DEVELOPMENT OF THEORY

A. Digital Image Basics

An image can be modelled by a function of two variables
f(x, y), where x and y are spatial coordinates in the image
plane as shown in Fig. 1 below:

Fig. 1: Image coordinate system

The magnitude of f(x, y) describes the intensity of the
image at a given location in the image plane. A digital image
is formed by quantising the x and y variables to form a finite
number of units known as pixels. The intensity of the image
is constant over the area of each pixel. The intensity is also
a discrete quantity often stored as an 8-bit integer. Storing
multiple intensity values for each pixel makes it possible to
encode information about the color of the pixel. The most
widely used color system is RGB (“Red Green Blue”) which
stores three values for each pixel to represent the “amount” of
red, green or blue contained in the pixel [4]. The combination
of these three values produces the overall color of the pixel.
These separate values of intensity to describe each pixel are
called color channels. When only a single channel is used,
each pixel in the resulting image will be a different shade of
gray. This is called a grayscale image.

B. Edge Detection

Edge detection is the process of emphasising regions in an
image where the intensity of the pixels is changing rapidly.
These regions correspond to edges in the image. A Sobel
filter performs edge detection by computing the approximate
gradient of the image intensity function f(x, y) for each pixel
in the image [5]. Pixels with a large gradient are likely to
correspond to edges in the image. A Sobel filter is applied by
convolving two separate kernels Gx and Gy with an image
to emphasize vertical and horizontal edges respectively. These
two Sobel kernels are defined in (1).

Gx =

+1 0 −1
+2 0 −2
+1 0 −1

 , Gy =

+1 2 +1
0 0 0
−1 −2 −1

 (1)

The output of each kernel at each point is then combined
together to form a single value using equation (2).

G =
√

(Gx)2 + (Gy)2 (2)

The effect of applying a Sobel filter to an image is illustrated
below. This is often called a contour image.

Fig. 2: Image before and after sobel filtering

C. Image Binarisation

A binary image is an image containing only two pixel
intensities, typically black with a pixel intensity of 0, or white
with a pixel intensity of 255. The image binarization algorithm
thus introduces a threshold which determines whether a certain
grayscale pixel is classified as black or white. If a pixel is

greater than the threshold, it is set to 255, otherwise it is set
to a value of 0. Binarization may take a simple or complex
form depending on the application. In the simplest case, a
fixed threshold such as the midpoint can be used. However, for
more complex applications, an adaptive binarization algorithm
can be implemented. In the context of lane detection, adaptive
binarization would play an important role if the brightness
of the image were to differ significantly such as in day and
night conditions [5]. The binarization step is crucial in the
processing pipeline as the input to the Hough Transform,
which performs the line detection, must be a binary image.
The effects of binarization can be observed in the image below.
The most noticeable effects occur in the grey area of rock and
trees on the left which becomes more starkly black and white
after binarization.

Fig. 3: Image before and after threshold binarization

D. Image Dilation

Image dilation has the effect of expanding the image pixels
and is typically applied to binary images. Hence it follows the
binarization stage in the pipeline. Image dilation is one of two
fundamental morphological operations, with the other being
erosion. Image dilation minimizes any holes in the boundaries
found in the image and is thus an important pre-processing
step before the Hough Transform. Image dilation effectively
adds pixels to the boundaries in an image and thus makes these
boundaries clearer before being input to the Hough Transform
module [6]. Image dilation is performed by applying an NxN
kernel to the original image which detects whether the centre
pixel of the kernel is part of a boundary (i.e. if the centre pixel
has a value of 255) and then sets the surrounding window of
neighbouring pixels to 255 as well. In this way, the boundaries
in the image are enhanced. The larger the size of the kernel,
the more notable the effects of the dilation. An important step
in designing the image dilation algorithm is determining the
optimal method to handle boundary issues. Several common
options include avoiding processing the boundaries, filling in
the missing window entries from elsewhere in the image or
shrinking the window near the boundaries so that each window
is filled.

Fig. 4: Image before and after image dilation

E. The Hough Transform for Straight Line Detection

The Hough Transform (HT) is a robust method used to
detect straight lines in an image with the presence of noise.
The HT is appropriate for this application as most lanes
will appear approximately straight in an image. It works by
transforming points in the image plane (x, y) to Hough Space
(HS) which is parameterized by (ρ, θ) The parameter ρ is the
magnitude of the normal vector drawn from the origin to the
straight line, and θ is the angle between this vector and the
horizontal axis of the image [5]. This relationship is given by
equation (3).

ρ = xcos(θ) + ysin(θ) (3)

Given a point in the image plane, the set of all possible
straight lines that pass through this point appear as a sinusoid
in HS. A set of two or more points that lie on the same line
correspond to the intersection of these sinusoids. The more
points that exist on the same line in the image plane, the
more sinusoids that will intersect at the same point in HS.
The following figure shows how two lines in the image plane
would map to HS:

Fig. 5: Illustration of the mapping between the image plane
and Hough Space (HS)

Fig. 5 illustrates how points on the same line in the image
plane correspond to a point of intersection in HS. These
intersection points are shown by the two “bright” spots in
HS. The more pixels that are on the line, the more sinusoids
that will intersect at the same point in HS, the “brighter” the
point of intersection becomes in HS.

The Inverse Hough Transform (IHT) is the process of
mapping points in HS, parameterised by (ρ, θ) back to straight
lines in the image plane given as y = mx+b. The points in HS
with the largest magnitude, correspond to lines in the image

plane that are most apparent. The parameters of the line in the
image plane are calculated using equation (4) and (5).

m = cot(θ) (4)

b = ρ/sin(θ) (5)

F. Video Streaming and VGA Output

Video Graphics Array (VGA) is a graphics standard which
describes an analogue interface between a device and a
monitor. A VGA connector is a three-row 15-pin DE-15
connector. VGA cables carry analogue RGBHV video signals.
These signals include the RGB values for each pixel as well
as the hsync and vsync signals which ensure synchronization.
The horizontal sync (hsync) specifies the time taken to scan
through a single row of pixels and vertical sync (vsync) signal
gives the time taken to scan an entire screen of pixels [7]. Thus
the horizontal sync demarcates a line while the vertical sync
demarcates a frame. VGA provides a resolution of 640x480
pixels with a refresh rate of 60Hz [8]. The Nexys A7 board
uses 4-bits per colour and uses resistor divider circuits to
produce 16 signal levels for each colour signal [9]. VGA
signals are partitioned into two phases: display time (drawing
pixels) and blanking intervals [8]. To achieve a 60Hz refresh
rate, the VGA circuit should be clocked at 25MHz where
each pixel scan will take 40ns [7]. The timing of the VGA
circuit is summarised in the diagram below which shows the
relationship between the display time and blanking time.

Fig. 6: Diagram showing synchronization and timing of VGA
signals

In Fig. 6 it can be observed that the sync signals occur
during the blanking intervals. Thus the display time makes up
only a portion of the total time per line, with blanking taking
up the residual time. This must be accurately mapped to the
number of clock cycles on the FPGA in order to ensure correct
functioning.

III. METHODOLOGY

This chapter describes the methodology adopted for this
project.

A. Overview of Approach

The proposed system will be prototyped on a Nexys-A7
development board. The FPGA will be used to accelerate the
image processing pipeline required for lane detection. The
prototype will be capable of processing a single frame of
video to extract useful information about the road markings.
This will be sufficient to demonstrate a proof-of-concept and
the system could be extended to process real time video in
practice. A single 520x400 px frame will be taken from a
frontward facing camera mounted on the vehicle and will be
loaded into BRAM on the FPGA. The frame will be stored in
greyscale to save memory.

B. “Plan A” and “Plan B” Approach

The project imposed significant time constraints and thus a
dual-approach was taken to allow for adjustment of the scope
of the problem during development. The pipelined nature of
the project allowed for the scope to be reduced or extended
with ease and thus the complete specification of the system,
or “Plan A”, could have been reduced if necessary. The ’Plan
B’ design constituted a revised version of the prototype to
implement a simpler system with a subset of the original
features.

Plan A: A complete prototype would implement the entire
image processing pipeline required for lane detection. This
pipeline would begin with first applying an edge detector
to the input image. The result of which would undergo
binarization and image dilation. This binary image would
then be passed to the Hough Transform (HT) module for
straight line detection. The HT module would then determine
the position and orientation of the traffic lanes in the image
and output this information to the line drawing module. This
module would show the detected lanes on the original image
before the final image is outputted to an external VGA display.
The orientation of the detected lanes is also used to determine
if the vehicle is about to drift into neighbouring lanes of traffic,
triggering a warning LED.

Plan B: In the case of insufficient time to meet all the
specifications of “Plan A”, a simpler “Plan B” system would
have been developed instead. The revised design focused
on the fundamental stages in the image processing pipeline
including the edge detection and threshold binarization. The
resulting image would be output to an external display using
VGA as per “Plan A”. The pipelined nature of the project
allowed for the scope to be reduced or extended with ease in
accordance with time constraints.

C. Tools and Hardware

The hardware prototype was developed on a Nexys A7
development board with Xilinx Artix-7 100-T FPGA. The
FPGA has the following specs [9]:

• 15,850 logic slices, each with four 6-input LUTs and 8
flip-flops

• 4,860 Kbits of fast block RAM

• 240 DSP slices
A list of other required hardware is included below.
• Monitor with VGA input
• VGA Cable
• USB Cable (for programming the FPGA and debugging)
The prototype was implemented in Verilog HDL. Xilinx

Vivado Design Suite was used for synthesis, translation, and
route and place.

D. Basic Development Workflow

Each module in the image processing pipeline was
developed independently. The first step involved prototyping
each module in software until it produced acceptable results.
Then an equivalent hardware design was drafted and simulated
using the Vivado simulation environment. This process was
iterative with modifications being made to each design as
necessary. Once complete, each module was synthesised and
programmed onto the FPGA for further testing. Finally, each
module was integrated into the existing pipeline.

E. Expected Results

The proposed system is expected to detect lane markings
from a frontward facing camera on a vehicle. The detected
lanes should be drawn onto the original image and output to an
external display. This behaviour is not strictly required for the
system in practice, however it is important for development
to validate the output. In addition, the proposed system is
expected to correctly identify when a vehicle is about to exit
its current lane from the forward facing image. This should
trigger a visible lane departure warning. The system is also
expected to perform both of these operations in real-time.

F. Validation and Testing Strategy

1) Golden Measure: The hardware prototype was
benchmarked against a golden measure that is known to
produce correct results. This golden measure was developed
in software using a well tested library. The hardware design
was validated to ensure that it produced the correct results
before testing the processing speed and performance of the
design.

2) Validation Strategy: The golden measure was used to
validate the results produced by hardware design. Each stage
in the image processing pipeline was validated separately using
one of the three validation strategies outlined below:

Cross-correlation:
The output image of the hardware module is compared to the
golden measure using a 2D cross-correlation function. The
process of cross-correlation produces a value r between -1
and 1, where 1 is perfect correlation, 0 is no correlation,
and -1 is perfect negative correlation. The goal would be
to achieve a high correlation (value close to 1) indicating
that the module produces an output that is very similar to
the golden measure. A standard library implementation of a
cross-correlation function was used for validation.

Pixel Error:
Another strategy to validate module output is to count the
total number of pixels in the output image that have been
misclassified. This is known as the pixel error and is typically
used when evaluating a binary output image [10]. In order to
provide a more intuitive understanding proportional to the size
of the input image, the pixel error can be written as the pixel
error rate (PERR) defined in equation (6).

PERR =
pixel error

total pixels
(6)

It should be noted that the pixel error rate can be converted
to a more traditional image quality descriptor, mean squared
error, using equation (7) since the magnitude of the error will
be 255 if a pixel is misclassified.

MSE = PERR.(255)2 (7)

The basis for determining whether a pixel is misclassified
will be a pixel-wise comparison with the golden measure.

Mean-squared-error (MSE):
A final approach that is used to validate certain modules is
the mean-squared-error between the actual output and the
expected output from the golden measure. This is typically
the approach that is adopted for modules in the processing
pipeline that produce an output other than an image, such as
a calculated value. In order to further enhance the evaluation,
this process can be repeated for different signal to noise ratios
(SNR) [11]. These varying SNRs can be generated by adding
white Gaussian noise to the input test image.

3) Performance and Speed-up: The purpose of using an
FPGA is to accelerate the image processing pipeline and
achieve speed up over an equivalent software implementation.
Speed-up of the hardware implementation over the golden
measure will be determined by timing the critical sections of
each implementation. The speed-up will be calculated using
equation (8).

speed up =
golden measure wallclock time

optimised design wallclock time
(8)

The critical section includes the following modules:
Sobel filter, Image binarization, Image dilation and Hough
Transform. To ensure caching will not be an influencing
factor on the performance of the golden measure, the first
three runs will be discarded. In addition, ten runs will be
averaged together to increase the accuracy of each result. The
hardware design should have deterministic performance and
thus multiple runs for each test will not be necessary.

IV. DESIGN

The design consists of an image processing pipeline that
will be used to detect traffic lanes in an image. This pipeline
contains several stages that are required for lane detection. The
block diagram in Fig. 7 provides a high-level overview of the
proposed system.

The prototype will accept an 520x400px greyscale image at
the input, and produce an image at the output with the detected
lanes. A warning LED will also be triggered should the system
detect that the vehicle is about to drift into neighbouring lanes
of traffic. Each of the modules from the block diagram in Fig.
7 will be described in more detail below.

A. Sobel Filter Module

The Sobel Filter emphasises regions in an image where
the intensity of the pixels is changing rapidly. It does so by
convolving two 3x3 kernels with the image separately, and
then combining the result. The first kernel is used to detect
vertical edges in the image, and the second kernel is used to
detect horizontal edges in the image. The kernels are defined
in Fig. 8 with the labels ‘a’ − > ‘i’ mapping to each index
in the kernel.

Fig. 8: Vertical and horizontal Sobel kernels

The process of convolution involves sliding the kernel across
the image. The output at a specific point in the image relies
on the values of the pixels surrounding the point. A buffer
network ensures the correct pixel is provided to the correct
Sobel kernel at the right time. This is done using a series
of row buffers and pixel buffers. As the name suggests, the
row buffer stores an entire row of the input of the image and
the pixel buffer stores a single pixel. Fig. 9 below shows the
proposed model of the module including the network of buffers
that will be used to provide the necessary inputs, as well as
the two Sobel kernels used to perform edge detection. Note
that the labels ‘a’ − > ‘i’ correspond to the labels used in the
diagram of the Sobel kernels shown previously.

B. Image Binarization Module

The image binarization module converts a grayscale image
to a binary image. This module will be implemented using
a fixed threshold. Initially, the threshold will be chosen to
represent the approximate midpoint between the two output
values. The output will be a binary image where every pixel
has either a value of 0 or 255. The threshold value will be
set to a value of 120 in the initial prototype, representing
approximately halfway between the output values. Each pixel
in the image will be compared to the threshold, with pixels
greater than the threshold being assigned an output value of
255 and pixels less than the threshold being assigned an output
value of 0. This procedure is illustrated in Fig. 10.

Fig. 7: Proposed Image Processing Pipeline

Fig. 9: Functional diagram of Sobel filter module

Fig. 10: Functional diagram of image binarization module

Once correctly implemented and time-permitting, an
adaptive threshold may be implemented in order for the
algorithm to perform well for both day and night conditions.
One such method could be to use Otsu’s threshold which
would allow the binary image to be insensitive to background
changes and illumination variance [2].

C. Image Dilation Module

The image dilation module smoothes the edges produced
by the Sobel Filter and thus enhances the performance of the
Hough Transform [2]. Image dilation can be performed using
two equivalent processes. Both processes include moving an
NxN window over the image. In the first process, if the centre

pixel of the window has a value of 1, all neighbouring pixels
in the window are set to 1 in the output image. The alternate
process is more suited to hardware implementation. In the
alternate process, the NxN window moves over the image and
detects whether any of the pixels in the window have a value
of 1. If one of the pixels has the value of 1, the centre of the
window is set to 1. This has the same effect as the first method.

In order to realise the image dilation algorithm in hardware,
a buffer network is needed to store each of the pixels in the
3x3 kernel. The OR operation is then performed in order to
determine whether any of the pixels in the kernel have a value
of 1. If at least one pixel in the window has a value of 1,
the output pixel (centre pixel of the window) is set to 1. This
procedure is summarised in Fig. 11 below.

D. Hough Transform Module

The Hough Transform (HT) is used to detect straight
lines in the image, with the form y = mx + b, through a
process of accumulation and voting in Hough Space. The
input to the HT is a binary contour image and the outputs
constitute the parameters of the detected line (m, b). To
improve performance, the HT will only be computed over
two specific regions-of-interest (ROI) instead of over the
entire input image. The first region-of-interest, called ROI L,

Fig. 11: Functional diagram of image dilation module

corresponds to the region in the image most likely to contain
the left hand lane line, while ROI R corresponds to the region
most likely to contain the right lane line. Fig.12 illustrates the
position of the two ROIs.

Fig. 12: Illustration of the two regions-of-interest (ROI) in the
image.

To further increase performance, the domain of possible
straight lines to be detected will be restricted to those that
might match lanes on the surface of the road. This means
restricting the slope of the line to be within θmin and θmax

where θ is the angle made between the line and the x axis as
shown. The best value for θmin and θmax will be determined
experimentally for both ROI L and ROI R. Fig. 13 below
shows the proposed model of the HT module.

The first block in this module is responsible for calculating
the HT of a given point (x, y) in the image plane. This will
be done using two LUTs, one for cos(θ) and one for sin(θ).
The output from these two LUTs will be multiplied by the x
and y coordinates of the point respectively, and then summed
together. The point (x, y) will be held at the input while θ
is varied from θmin to θmax. Adding the results from each
multiplication gives ρ. Fixed-point arithmetic was used in
all calculations in this module, with 8 bits reserved for the

fractional part of the number.

The pair (ρ, θ) represents a point in Hough Space (HS).
Each point in HS is mapped to a particular memory address
in the accumulator. The accumulator block is responsible for
taking the address provided by the HT calculation block and
incrementing the number of votes stored at that address in
memory. The process of voting for a particular point (ρ, θ) in
HS essentially increases the confidence that a particular line
defined by the parameters (ρ, θ) exists in the input image.
The vote unit block, shown in Fig. 13 is used to increment the
number of votes stored at a given location in the accumulator.
The accumulator will be initialized as a dual-port RAM to
allow the new number of votes to be written back into the
same address in memory.

The peak detector block monitors the number of votes as
they are incremented and stores the pair (ρ, θ) that corresponds
to the highest number of votes. Once all points in the image
plane has been processed, the pair (ρ, θ) stored in the peak
detector represent the parameters of the most apparent line
in the image plane. To determine the equation of this line in
the image plane, the parameters (ρ, θ) must be transformed
back using the Inverse Hough Transform (IHF). This process
involves two more LUTs and a single multiply. The output
of this module is the equation of the line in the image plane
given by the equation y = mx+ b.

E. Line Drawing and VGA Output
The VGA controller module requires a timing circuit to

ensure the active display time and blanking intervals are
properly managed. The functioning of the timing circuit is
depicted in Fig. 14 below, showing the series of blocks
needed. The first step involves dividing the 100MHz clock
down to a 25MHz clock, also known as the pixel clock. The
pixel clock then determines when the horizontal and vertical
counters are incremented, with the vertical counter only being
enabled when the horizontal counter reaches its maximum

Fig. 13: Functional diagram of Hough Transform (HT) module

Fig. 14: Functional Diagram of VGA Controller Circuit

value (terminal count). This ensures that the vertical counter is
only incremented once the end of a line has been reached. The
counters are then used to compare the pixel counts to the given
timing parameters needed to implement the display time and
blank time. These timing parameters, such as H SYNC TIME
and V SYNC TIME will be set as fixed local parameters in
the Verilog module. The counters H COUNT and V COUNT
keep track of the column and row information as well as
dictating when the horizontal sync (HS) and vertical sync
signals (VS) will be triggered.

The count values are also compared to the expected values
signifying the start and end of display time. When the count
values are between the defined display time interval, the
DISP EN of the image source is activated and pixel values
are written from the image source to the R, G and B channels.
When the count values are outside of the display time range,
zeroes will be written to the RGB output, thus creating a
blanking interval. The horizontal sync (HS), vertical sync
(VS), R, G and B signals are then fed to the VGA connector.

V. PROPOSED DEVELOPMENT STRATEGY

As mentioned previously, the proposed system has
commercial application in driver assistance for autonomous
vehicles. The prototype could operate as a stand-alone lane
departure warning system or integrate into a larger Advanced

Driver Assistance System (ADAS) to provide active lane keep
assistance. Either option would help improve road safety by
reducing the risk of driver inattention or fatigue. For the
system to be used in this way, the design would need to
be extended to process video input and to interface with a
frontward facing camera on a vehicle.

A. Lane Departure Warning
A lane departure warning system immediately alerts the

driver if the vehicle begins to drift out of its current lane. This
is mostly used on highways and major roads. The system relies
on the driver to react accordingly once the warning is given,
and does not intervene and stop the vehicle from changing
lanes. At present, the prototype is designed to turn on LED
on the development board when it detects a lane departure.
This would have limited use in a real driving environment
and would have to be adapted to provide better feedback to the
driver. On possible approach would be warn the driver using
a pulsed vibration in the steering wheel. The prototype could
be easily adapted to accommodate for this by redirecting the
output trigger to a device in the steering wheel that regulates
the vibration.

B. Active Lane-Keep Assist
The second use-case of the prototype is in active lane-keep

assist. This type of system takes lane departure warning

one step further by automatically returning the vehicle to
the correct lane when necessary. Depending on the level of
driving automation, this action could be limited to a corrective
maneuver if the vehicle is about to exit the current lane, or
alternatively for a vehicle with higher autonomy this action
could relieve the driver of the task of steering completely -
this is known as auto-steer. The simplest approach would be
to feed the output of the prototype into a control system to
selectively brake individual wheels until the vehicle is centered
back in the lane [12]. This idea is illustrated in Fig. 15 below:

Fig. 15: Concept for active lane-keep assist control system

The binary output from the system would however likely
lead to a form of ”bang-bang” control, which may be
undesirable. For use in a more sophisticated control system,
the prototype would have be re-engineered slightly to provide a
slightly more complex output than the binary signal indicating
lane departure.

VI. PLANNED EXPERIMENTATION

This chapter aims to develop the experimental framework
used to evaluate the performance of the system.

A. Experimental Setup

The experimental setup used to test the performance
of the hardware accelerated system is described in this
section. To begin with, the Verilog HDL was synthesised and
converted into a bitstream on the host. The bitstream was
used to program the Artix-7 100-T FPGA using JTag over a
USB connection. Once programmed, the FPGA remains idle
until a button is pressed on the development board which
initiates processing. The output image that is produced by
the processing pipeline is sent back to the host via the USB
connection using UART. The host is configured to run a
Python script that monitors a serial port. The Python script
reassembles the transmitted image as it arrives at the serial
port and writes the result to file. The terminal output produced
by this script is shown below:

Fig. 16: Terminal output from host serial port monitor

Fig. 17 below shows a picture of the experimental setup
with the FPGA connected to the host via USB.

Fig. 17: Experimental setup

B. Development of Golden Measure

In order to develop the golden measure, each building
block in the pipeline was implemented in Python using
the OpenCV library. The OpenCV library is designed to
solve real-time computer vision problems and is thus relevant
to our application. It is highly optimised for numerical
operations and is also very well tested. The respective library
functions used for each stage include a sobel function for edge
detection, a threshold function for adaptive thresholding, a
dilate image function, and a HoughLines function for straight
line detection. These four library functions form the basis
of the algorithms that are to be implemented in Verilog for
the digital accelerator. An overview of the golden measure
implementation is shown in the listing below.
SOBEL FILTERING
filters.sobel(img_grey_cropped,1,imx,cval=0.0) # axis 1 is x
filters.sobel(img_grey_cropped,0,imy, cval=0.0) # axis 0 is y
img_sobel = np.uint8((abs(imx)+abs(imy))/4)

THRESHOLD BINARIZATION
ret, img_thresh = cv2.threshold(img_sobel, 78, 255,

cv2.THRESH_BINARY)

IMAGE DILATION
Taking a matrix of size DIALATION_KERNEL_SIZE as the kernel
kernel = np.ones((DIALATION_KERNEL_SIZE,DIALATION_KERNEL_SIZE),

np.uint8)
img_dilation = cv2.dilate(img_thresh, kernel, iterations=1)

HOUGH TRANSFORM
img_ROI_L = img_dilation[:, 0:int(width/2)]
img_ROI_R = img_dilation[:, int(width/2):]

lines_left = cv2.HoughLines(img_ROI_L,1,np.pi/180,110)
lines_right = cv2.HoughLines(img_ROI_R,1,np.pi/180,110)

Listing 1: Golden measure implementation in Python using
OpenCV

It should be noted that the chosen threshold for the golden
measure implementation of threshold binarization was set to
78 through experimentation.

C. Testing Procedure

Testing was conducted using the experimental setup
described above. This basic test procedure involved first

loading a specific test image into memory on the FPGA, then
processing the image, before finally sending the result back to
the host for inspection. Tests were conducted using the three
different input images shown in Fig. 18:

Fig. 18: Test input images 1,2, and 3

The three test images were chosen as follows:
Test Image 1: Tests lane detection in good conditions.
Test Image 2: Tests lane departure warning as the vehicle is
about to change lanes
Test Image 3: Tests lane detection at night to ensure that the
system still performs reasonably in more difficult conditions.

All test images are 520x400px stored in 8-bit grey scale.
As described previously in the validation and testing strategy,
the two key performance criteria of the proposed system are
accuracy and speed-up. These criteria were benchmarked
against the golden measure as described below. Also described
below is a strategy for determining suitable bounds for the
ROIs.

1) Determining suitable bounds for ROIs experimentally:
As mentioned previously in Chapter 4, the domain of possible
straight lines that will be detected by the Hough Transform
(HT) module is restricted to improve performance. This
optimisation can be made as the position of the camera
mounted on the vehicle is fixed and known. Thus, any
road lines are likely to appear in the regions-of-interest
(ROI L and ROI R) with an orientation that is fairly uniform
and predictable. The slope of the lane in the image can
thus be restricted between θmin and θmax. A reasonable
value for θmin and θmax was determined experimentally
for each ROI using the golden measure implementation. A
number of different test images were used to statistically
determine the best value for each boundary. Furthermore,
a suitable threshold for lane departure warning was also
found experimentally. The lane departure warning should

be triggered when one of the detected lanes has a slope
that is highly upright, indicating that the vehicle is far from
the center of the current lane and about to drift into a
neighbouring lane.

2) Evaluation of Accuracy: A thorough evaluation of
accuracy was conducted by comparing the outputs of the
hardware accelerated system with the outputs of the golden
measure. This comparison was made for each of the hardware
modules to ensure that the output at all points in the processing
pipeline was correct. Different validation strategies were
adopted for different modules according to the type of output
they produced. Table I shows which validation metric was used
for each of the modules in the pipeline.

TABLE I

SELECTION OF VALIDATION METRIC FOR EACH MODULE

Module Metric
Sobel filter r (cross-correlation)
Image binarisation PERR (pixel error rate)
Image dilation r (cross-correlation)
Hough Transform MSE

The details of each of the metrics shown in Table I were
provided in Chapter 3. A Python script was developed to
compute each of the validation metrics automatically using
well-tested library algorithms.

3) Speed-up: As mentioned previously in Chapter 3, speed
up was measured by timing the critical section of the hardware
implementation. For these experiments, the critical section
is defined as all modules in the image processing pipeline
from the Sobel filter up to the Hough Transform. This does
not include transmitting the image back to the host using
UART. This was excluded from the speed-up calculation as
this step would not typically be performed by the system in
practice where the output of the system would be the lane
departure warning alone. However, this step was required
during development to debug the system and validate the
output. Timing of the critical section was done using a
custom timer on the FPGA. This timer was started as soon
as processing was initiated and stopped just before the output
image was sent via UART. The measured time was shown on
a seven segment display.

VII. RESULTS

This section outlines the results that were obtained from the
FPGA implementation in comparison to the golden measure.

A. Baseline results from the golden measure

The golden measure was developed in Python using
OpenCV to implement each of the stages in the image
processing pipeline. The output produced by the golden
measure for test images 1,2,3 is shown in Fig. 19-21.

Fig. 19: Output of Test Image 1 forming baseline results from
golden measure.

Fig. 20: Output of Test Image 2 forming baseline results from
golden measure.

Fig. 21: Output of Test Image 3 forming baseline results from
golden measure.

The critical section of the golden measure was timed using
the testing procedure described previously in Chapter 6. The
average execution times for test images 1,2, and 3 were
232.2ms, 233.9ms, and 230.1ms respectively1. The average
execution time did not vary significantly over the different
test images as each image was selected to have the same
520x400px dimensions. The golden measure would be able
to achieve a frame rate of approximately 4.3 fps, too low for
any real-time application.

B. Determining suitable boundaries for the ROIs

The limits θmin and θmax on the slope of the detected lines
were determined experimentally for each region-of-interest
(ROI). For ROI R it was determined that the slope of the
detected line should be between θmin = 1◦ and θmax = 65◦,
while for ROI L the slope of line should be between θmin =
115◦ and θmax = 179◦. These ranges of values worked
best for the input images that were tested. Furthermore,
the best threshold for lane departure warning was also
found experimentally. The lane departure warning should be
triggered when one of the detected lanes has a slope that is
very upright, indicating that the vehicle is about to drift into a
neighbouring lane. A threshold of 21◦ was chosen for ROI R
and 159◦ for ROI L. These thresholds proved to be a good
compromise in detecting lane departures far enough in advance
and preventing unnecessary warnings.

1Executed on a 2015 Macbook Pro 2.7GHz Intel Core i5

C. Results obtained from FPGA prototype

The FPGA implementation produced the outputs, shown in
Fig. 22-24 below, using the experimental framework developed
in Chapter 6.

Fig. 22: Output of Test Image 2 using FPGA prototype.

Fig. 23: Output of Test Image 2 using FPGA prototype.

Fig. 24: Output of Test Image 3 using FPGA prototype.

Through comparison of the observed results, the results
obtained from the hardware system seem to match the results
obtained from the golden measure, even in more difficult
conditions such as night conditions in test image 3. The
accuracy of the output will be determined quantitatively in
the following section.

D. Validation of Output

The output from the prototype will be validated according
to the validation strategy detailed in Chapter 6, using the
golden measure as the ground truth. This involves validating
each module in the pipeline using an appropriate metric. The
validation score for each module is summarised in Table II
below.

TABLE II

VALIDATION SCORE FOR EACH MODULE OUTPUT

Module Metric Test Im. 1 Test Im. 2 Test Im. 3
Sobel Filter r 0.995 0.991 0.992
Image Binarisation PERR 2.1% 1.4% 1.9%
Image Dilation r 0.982 0.989 0.987
Hough Transform MSE 0.17 0.13 0.14

The validation scores indicate that output from each module
is reasonably accurate when compared to the golden measure.
One possible source of the error in the output is the loss
of precision in calculations due to fixed point arithmetic on
the FPGA. In addition, both implementations had a slightly
different strategy for dealing edge cases on the border of the

image which might have lead to slightly different results. This
error is small and unlikely to impact on the performance of
the system in practice.

E. Speed-up Calculation

Having validated the output produced by the FPGA
implementation, the speed-up achieved from this hardware
acceleration can be calculated. Table III below summarises the
processing times for each test input for the golden measure and
FPGA implementations. The speed-up achieved for each test
image is also included.

TABLE III

AVERAGE PROCESSING TIME AND SPEED-UP

Test Golden Measure FPGA Speed up
Image 1 232.2ms 23.1ms 10.1
Image 2 233.9ms 23.0ms 10.2
Image 3 231.1ms 22.8ms 10.1

As mentioned previously, the execution time does not vary
significantly between test images due to the dimensions of
each image being uniform. In addition, the processing time for
each run on the FPGA is exactly the same as the FPGA is able
to provide deterministic performance. The FPGA prototype
was able to achieve a processing time of less than 23.1ms for
each frame. This is sufficient for real time processing with a
frame-rate of 43.3 fps. This is an important result as real-time
performance is key for effective lane detection in practice.

F. Lane Departure Warning

The proposed system is used to provide lane departure
warning. This warning is triggered if one of the detected lanes
is excessively upright, indicating that the vehicle is about to
switch lanes. For test image 1, the vehicle was centered in the
lane and thus the warning should not be triggered. While the
second test image the vehicle is in the process of changing lane
which should trigger the warning. The warning is indicated by
turning on a series of LEDs on the development board. This
behaviour is demonstrated in Fig. 25 which shows the state of
the LEDs after lane detection has occurred for test images 1
and 2.

Fig. 25: LED Lane departure warning for Test Image 1 (left)
and Test Image 2 (right)

G. UART and VGA Output on the FPGA

In the initial design, it was planned to output the image
from the FPGA to an external monitor using VGA. After
consideration, it was decided that this step was not essential for
the proof-of-concept prototype and would not be implemented
on the FPGA. Instead, the output was sent back to the host over
UART. This approach was chosen for two reasons. Firstly, the
project was undertaken during the COVID-19 pandemic which
made it difficult to procure the additional hardware required
for a VGA output - specifically the external monitor and
VGA cable. Secondly, according to the validation procedure
each intermediate output produced by the processing pipeline
on the FPGA had to be sent back to the host anyway. A
UART interface was developed for this purpose and was easily
adapted to send the final output back to the host as well.
Simplifying the design in this manner allowed for more time
to spend on other aspects of the design.

H. FPGA Resource Utilisation

A summary of the FPGA resource utilisation is shown in
Table IV below.

TABLE IV

FPGA RESOURCE UTILISATION

Resource Available Usage %
Slice LUT 63400 1778 2.80%
Slice Registers (FF) 126800 784 0.62%
On-chip memory (BRAM tiles) 135 98 72.59%
Off-chip memory - 0 0.00%
DSPs 240 5 2.08%
Power - 0.178W -

On-chip memory was a significant constraint on the design
of the image processing pipeline. The Xilinx Artix-7 100-T
FPGA only has 4.86Mbits of fast on chip memory distributed
over 135 BRAM tiles. The image buffer and the Hough Space
accumulator used the most amount of memory. The image
buffer was used to store the 520x400px input image for lane
detection. This image was stored in 8-bit gray scale consuming
1.66Mbits of memory (52 BRAM tiles). The Hough Space
accumulator required 217 unique addresses in memory to
fully represent Hough Space (HS). Combining the two HS
parameters ρ (11-bits) and θ (6-bits) results in 217 different
combinations which are represented by a unique location in
memory. The number of votes for each pair (ρ, θ) is stored as
an 8-bit number requiring 1.05Mbits of memory (32 BRAM
tiles). An additional 14 BRAM tiles are required for other
purposes including intermediate image buffers, row buffers,
and trig value LUTs. This brings the total memory requirement
to 98 BRAM tiles (72.59% of the available BRAM tiles). The
memory requirement places an upper limited on the maximum
input image resolution and would have to be addressed to
process high resolution images.

VIII. CONCLUSION

A. Accomplishments

This paper presented an FPGA based architecture for lane
detection and lane departure warning. The proposed design
was able to correctly identify and extract lane markings from
an image produced by a forward facing camera on a vehicle.
This was achieved by successfully implementing the Hough
Transform on the FPGA. Each 520x400px test image was
processed in under 23.1ms which resulted in a 10.1x speed
up over an equivalent software implementation. The design
was capable of operating in real-time with a frame-rate of
43.3fps. Furthermore, the prototype was able to identify when
the vehicle was about to drift into a neighbouring lane by
analysing the slope of the detected lane markings in the image.
The system was able to correctly predict lane departures and
trigger the lane departure warning as necessary. The design
was tested thoroughly in different driving conditions and
detected lane markings correctly in each case. Some tests were
completed at night demonstrating that the design was robust
and produced the correct output in difficult conditions. The
design was able to successfully meet all the objectives required
for the proof-of-concept as set at the start of the project.

B. Challenges

One significant obstacle was the tight memory constraints
imposed by developing the prototype on an FPGA.
Image/video processing is always demanding on memory
resources based on the inherent requirement to store the
image/video being processed. It was a challenge to implement
the image processing pipeline on the FPGA to be memory
efficient while not compromising on processing speed.
Further adding to the challenge was the inclusion of the
Hough Transform in the processing pipeline which itself
requires significant memory. This memory requirement grows
with the size of the input image as Hough Space must also
be expanded to fully represent the set of all possible line
parameters. However, despite the unique challenge presented
by the combination of all these demands on memory, the
FPGA architecture was designed successfully to meet all the
required specifications using only 72.59% of on-chip memory.

The ambitious scope of the project also proved to be a
challenge with the very limited time available. The proposed
architecture was carefully designed and consisted of many
interconnected modules. Producing a working prototype
within the required time frame required considerable effort.
The complexity of implementing the Hough Transform on
the FPGA made development particularly difficult, especially
when navigating the memory constraints discussed previously.
It was decided not to implement the VGA output on the
FPGA as per the initial design, as this step was not essential
for the proof-of-concept. Instead, the design relied on UART
to send the resulting image back to the host for inspection.

C. Future Work

The project could be continued by refining the prototype
from a proof-of-concept into a complete product. This product
would have practical use in industry and could be used by
autonomous vehicles as part of a Lane Keep Assist System
(LKAS). The design would have to be extended to process
video from the forward facing camera instead of just a
single frame. The modifications required to allow for video
processing should be fairly straightforward as the current
design is already suitable for real-time processing. Another
avenue for improvement would be to reduce the memory
requirement of the image processing pipeline. Increasing
memory efficiency would allow for higher resolution images
and improve the fidelity of the output.

REFERENCES

[1] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation,” IEEE
Transactions on Intelligent Transportation Systems, vol. 7, no. 1, pp.
20–37, 2006.

[2] R. Risack, N. Mohler, and W. Enkelmann, “A video-based lane keeping
assistant,” Proceedings of the IEEE Intelligent Vehicles Symposium 2000,
pp. 356–361, 2000.

[3] I. E. Hajjouji, S. Mars, Z. Asrih, and A. E. Mourabit, “A novel
fpga implementation of hough transform for straight line detection,”
Engineering Science and Technology, 2019.

[4] University of Washington Computer Science Engineering, “Image
processing,” 2019. [Online]. Available: https://courses.cs.washington.
edu/courses/cse557/00wi/lectures/imageprocessing.pdf

[5] J. Zhao, “Video/image processing on fpga,” Master’s
thesis, Worcester Polytechnic Institute, Worcester, Massachusetts,
2015. [Online]. Available: https://pdfs.semanticscholar.org/4920/
c7fcefa6ca11bcd907d9ecef7f0181522b06.pdf

[6] S. Perkins, R. Fisher, A. Walker, and E. Wolfart, “Dilation,” 2003.
[Online]. Available: https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm

[7] Embedded Thoughts, “Driving a vga monitor using an fpga,” July
2016. [Online]. Available: https://embeddedthoughts.com/2016/07/29/
driving-a-vga-monitor-using-an-fpga/

[8] W. Green, “Fpga vga graphics in verilog part 1,”
December 2017. [Online]. Available: https://timetoexplore.net/blog/
arty-fpga-vga-verilog-01

[9] Digilent, Nexys A7 Reference Manual, Pullman, Washington, July
2019. [Online]. Available: https://reference.digilentinc.com/reference/
programmable-logic/nexys-a7/reference-manual

[10] P. Stathis, E. Kavallieratou, and N. Papamarkos, “An evaluation
technique for binarization algorithms,” Journal of Universal Computer
Science, vol. 14, no. 18, pp. 3011–3030, 2008.

[11] C. Hari, “Performance evaluation of different line detection algorithms,”
International Journal of Modeling and Optimization, vol. 2, no. 4,
2012. [Online]. Available: http://www.ijmo.org/papers/152-S014.pdf

[12] J. Lee, J. Choi, K. Yi, and M. Shin, “Lane-keeping assistance
control algorithm using differential braking to prevent unintended lane
departures,” Control Engineering Practice, vol. 23, no. 1, pp. 1–13,
2014. [Online]. Available: https://doi.org/10.1016/j.conengprac.2013.10.
008

APPENDIX

Github repository
https://github.com/jasonpilbrough/LEIA

https://courses.cs.washington.edu/courses/cse557/00wi/lectures/imageprocessing.pdf
https://courses.cs.washington.edu/courses/cse557/00wi/lectures/imageprocessing.pdf
https://pdfs.semanticscholar.org/4920/c7fcefa6ca11bcd907d9ecef7f0181522b06.pdf
https://pdfs.semanticscholar.org/4920/c7fcefa6ca11bcd907d9ecef7f0181522b06.pdf
https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm
https://embeddedthoughts.com/2016/07/29/driving-a-vga-monitor-using-an-fpga/
https://embeddedthoughts.com/2016/07/29/driving-a-vga-monitor-using-an-fpga/
https://timetoexplore.net/blog/arty-fpga-vga-verilog-01
https://timetoexplore.net/blog/arty-fpga-vga-verilog-01
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
http://www.ijmo.org/papers/152-S014.pdf
https://doi.org/10.1016/j.conengprac.2013.10.008
https://doi.org/10.1016/j.conengprac.2013.10.008
https://github.com/jasonpilbrough/LEIA

	I Introduction
	II Background and Development of Theory
	II-A Digital Image Basics
	II-B Edge Detection
	II-C Image Binarisation
	II-D Image Dilation
	II-E The Hough Transform for Straight Line Detection
	II-F Video Streaming and VGA Output

	III Methodology
	III-A Overview of Approach
	III-B “Plan A” and “Plan B” Approach
	III-C Tools and Hardware
	III-D Basic Development Workflow
	III-E Expected Results
	III-F Validation and Testing Strategy
	III-F1 Golden Measure
	III-F2 Validation Strategy
	III-F3 Performance and Speed-up

	IV Design
	IV-A Sobel Filter Module
	IV-B Image Binarization Module
	IV-C Image Dilation Module
	IV-D Hough Transform Module
	IV-E Line Drawing and VGA Output

	V Proposed Development Strategy
	V-A Lane Departure Warning
	V-B Active Lane-Keep Assist

	VI Planned Experimentation
	VI-A Experimental Setup
	VI-B Development of Golden Measure
	VI-C Testing Procedure
	VI-C1 Determining suitable bounds for ROIs experimentally
	VI-C2 Evaluation of Accuracy
	VI-C3 Speed-up

	VII Results
	VII-A Baseline results from the golden measure
	VII-B Determining suitable boundaries for the ROIs
	VII-C Results obtained from FPGA prototype
	VII-D Validation of Output
	VII-E Speed-up Calculation
	VII-F Lane Departure Warning
	VII-G UART and VGA Output on the FPGA
	VII-H FPGA Resource Utilisation

	VIII Conclusion
	VIII-A Accomplishments
	VIII-B Challenges
	VIII-C Future Work

	References
	Appendix

