
1

PADAWAN
Parallel Accelerator for Digitising Audio With

Attenuation of Noise
Final Report
EEE4084F Class of 2017
University of Cape Town

South Africa

James Cushway*, George de Kock†, and Johan Jansen van Vuuren§

*CSHJAM001
†DKCGEO002
§JNSJOH014

Abstract—This paper details the design and methodol-
ogy for building a hardware accelerator for parallel digital
audio processing. The Nexys 4 DDR evaluation board with
a Xilinx Artix 7 FPGA is used for the implementation
of the accelerator. The hardware accelerator is used to
digitise an analog audio signal using a 12-bit ADC, and
perform digital filtering thereon to create numerous audio
effects. A PWM output, obtained by combining the results
of the parallel filtering operations, is sent to a mono audio
output port. Effects include echo, chorus, reverberation
and distortion, specifically overdrive. The intensity of
effects are designed to be dynamically adjustable using
switches found on the Nexys 4 DDR board. The filters
designed for the board are additionally implemented in
Octave as a golden measure, and were tested on various
audio signals to quantify performance, with which the
FPGA performance is compared and evaluated. The paper
also details the effects of bit truncation on audio, and the
use of dithering and noise shaping to rectify said effects.

I. INTRODUCTION

The PADAWAN (Parallel Digital Accelerator With
Attenuation of Noise) is a digital accelerator which
filtering and processing on an input audio signal,
streamed to the device from a host PC. The system
is be implemented on a Nexys 4 development board,
which hosts a Xilinx Artix 7 FPGA.

The hardware accelerator implements parallel digital
filtering, with each parallel filter implementing a
different sound effect on the input audio stream. The
different audio effects that are implemented are echo,
chorus, reverberation and overdrive. [1] The effects

are implemented by performing various combinations
of the audio signal and delayed, weighted versions of
itself, and various forms of modulation. These filters
are adjustable during operation by various user inputs
found on the Nexys 4 DDR.

Thereafter, the output of filters are modulated using
PWM. To satisfy the clock speed requirements for
PWM, bit truncation needs to occur which causes a
some distortion and unwanted harmonics within the
output analog waveform. Dithering [2] can be used
to reduce the unwanted effects of the bit truncation,
with the slight trade-off of having a slightly higher
noise level on the output, and noise shaping can be
used to reduce the perceived noise level on the output
introduced from dithering.

Finally the system was tested on live audio streams,
to verify the implemented effects caused the desired
changes to the signal. The changes to effects via user
input were also be tested in this manner. The system
requirement that the device performs in real-time, as
far as is perceivable to the human ear, was confirmed
by playing the filtered output in parallel with the
original audio signal and observing that the audio was
synchronised. Thereafter, the filters were implemented
on Octave and performance was compared by means of
wall clock time, that is, how long it took for various
combinations of filters to yield output samples. The
Octave implementation was used as a golden measure to
compare to the performance achieved on the hardware
accelerator.

swinberg
Typewriter
P18



2

Fig. 1. Block diagram of basic FIR filter [3]

II. BACKGROUND

A. Digital audio filtering

Digital signal processing is a very common task due
to its wide application in a variety of fields. Digital
filtering can be performed using two different imple-
mentations, i.e. finite impulse response (FIR) filters and
infinite impulse response (IIR) filters. The most impor-
tant distinction between these two implementations is
that FIR filters utilise present and past input values only,
while IIR filters use additional previously calculated
output samples. IIR filters are inherently dependent on
negative feedback, presenting possible instability issues.
For the purposes of this proof of concept of hardware
acceleration of real-time audio filtering, FIR filters are
implemented to achieve specified audio effects. Achiev-
ing real-time filtering of audio signals using FIR filters,
involves discretization of an analogue audio input, and
discrete-time convolution, a process analogous to the
multiplication of the current input sample and (L-1)
previous input samples with the tap weights of the filter
transfer function, where L is the number of nonzero
weights in the transfer function h[n], followed by the
summation of all the products. This process can be
represented by Equation 1.

y[n] =

∞∑
k=−∞

w[k]x[n− k] (1)

To better understand the operation being performed, the
system is visualised in Figure 1, which shows a block
diagram a basic FIR filter. The input sample x[n] and its
previous inputs, {x[n-c], c>0}are multiplied by constant
tap weights corresponding to the delay of each sample.
A one-sample delay is indicated by the ∆-operation.

B. The issue of computational complexity

Audio filtering is a computationally expensive
operation, as an L-length digital filter requires L2

multiplications and L additions, leading to high
computational complexity. When the filters are of high
order, i.e. are nonzero for relatively long intervals, the
cost of computing output samples becomes a significant

limiting factor on the throughput. The problem also
manifests when multiple filters are applied to an input in
real time. This presents the opportunity for a parallelised
system computing different outputs for different filters,
and then combining the results to obtain an output
corresponding to the combination of parallel filters used.

Two different methods exist for implementing FIR
filters, i.e. multiple multipliers (MM) and distributed
arithmetic (DA) FIR filtering. MM-FIR filtering is
a typical method, where the number of multiplier
elements is determined by the required throughput [3].
One accumulator is used to store the sum obtained in
the aforementioned process.

For the purposes of this project, the number of
multipliers is set to the length of the filter coefficient
vector. The multipliers operate in parallel, and each
element requires access to memory holding filter
coefficients and past and present input samples.
The throughput of an MM-FIR filtering system is
proportional to the number of times the multipliers are
used. As a result, higher sampling rates are obtained by
using many multipliers.

The number of coefficient memories is equal to
the number of filters being implemented, as all filters
operate in parallel. The coefficients are therefore
accessed simultaneously with a circular pointer system
for incrementing the address during the filtering
operation. The same pointer system is used for the
memories holding the input samples. Each multiplier’s
sample and coefficient memories are combined,
illustrated in Figure 2. A memory pointer iterates
over the L addresses during each sampling period.
Adders arranged in a tree structure are used to sum the
products generated by the multipliers. The output of the
adder tree is fed into the accumulator, with the output
available after L clock cycles. The width of data buses
(in bits) are indicated with B in Figure 2.

C. Open-source libraries and the development challenge

Existing HDL modules exist in online open-source
code repositories, was used as a starting point for
the PADAWAN project. An XADC and PWM output
module written for the Nexys 4 DDR in Verilog is
available in an open-source licensed repository [4].

Many digital signal processing techniques are
independent of the data type. The interface and
communication protocol between different elements



3

Fig. 2. Combination of multiplier input and coefficient memories [3]

Fig. 3. DDR to RAM control signal interface block

on the Nexys 4 board remain the same regardless
of the signal type (e.g. audio or visual). Naturally,
no two projects are the same and many features and
modules will have to be built from scratch. The Nexys
4 reference manual and Verilog programming guide
will be of use during the system architecture design
and software implementation. Initially, Xilinx ISE
design suite was used for development, but many online
resources rely on Vivado which uses a different file
format for specifying constraints as well as a redesigned
IP core generator. The IP core wizard on Vivado 2017.2
was of great help to simplify interfacing with the
XACD and DDR2 RAM. The project mentioned above
also included a VHDL file that translates the more
complex DDR control signals to RAM control signals.
A block diagram [5] shown below (figure 3) illustrates
the conversion.

III. DESIGN

In the design of the PADAWAN, FPGA level require-
ments were developed by analysing the system level
requirements:

1) Near real-time audio filtering and processing

2) Dynamic adjustment of filters and effects
3) Digital audio stream as an input
4) Analogue output using pulse-width modulation
5) Noise shaping to increase apparent resolution

. Multiple audio effects are implemented on the audio
signal and filters were implemented on the Verilog HDL
platform. Implementation of pulse-width modulation is
required to produce a PWM signal from discrete sample
values.

Figure 4 shows a block diagram of the PADAWAN. An
audio signal is fed into the ADC of the Nexys 4. The
digitised signal is then sent to a parallel bank of filters
where each filter is performing a different effect on the
audio input.

A. Pulse width modulation of output signal

Pulse-width modulation (PWM) of a signal places
a high load on the system clocking requirements. In-
creasing the resolution of the PWM output requires a
higher system clock. To determine a suitable audio reso-
lution, the Nexys 4 clock frequency and the PADAWAN
sampling rate were considered. Since the desired output
sampling rate is 44.1kHz, the PWM carrier will have this
frequency. The XADC on the Nexys 4 has a maximum
resolution of 12 bits, i.e. 4096 distinct output values.
The required PWM granularity is therefore 4096. The
pulse width modulator will be driven by the 100MHz
system clock. The required PWM frequency however, is
obtained by using Equation 2 [6].

FPWM = Frange ×Resolution = 180.634MHz (2)

It is clear that the device is not fast enough to produce
this resolution of audio output, as it is clocked at
100MHz. Thus, bit truncation is necessary to meet the
clock requirements for the PWM signal. Using the above
calculations, it was discovered that an 11-bit sample is
the maximum resolution that the 44.1kHz PWM signal
can represent given the 100MHz clock.

B. Noise shaping

As described above, bit truncation was performed on
the digital 12-bit samples. This process introduces quan-
tization distortion, manifesting as unwanted harmonics in
the output. The design initially accounted for this by the
proposed implementation of noise shaping with dither-
ing. Before sampling, additive white noise can be added
to the input signal which greatly reduces the unwanted
effects caused from bit truncation, with the penalty of a
slightly higher noise level in the output. Noise shaping
can be performed, a process that manipulates the power



4

Fig. 4. Block diagram of PADAWAN System

spectral density (PSD) of the noise. The shaping has
the objective of minimizing noise power in the audible
frequency range by reducing the noise power in these
ranges. A relevant trade-off is the need to increase noise
PSD in some other frequency band - in this application,
the noise needs to be increased in the inaudible, higher
frequency range.

C. Advanced design

In the ideal, advanced solution to the problem of
real-time digital audio processing, an analogue voltage
signal can be prefiltered to condition the signal for
sampling, ensuring that unwanted high frequencies do
not interfere with the audible frequency range. The
signal is attenuated to fall inside [0:1]V, the range of the
on-board ADC. The desired sampling rate is 44.1KHz.
This results in a stream of amplitude values that is be
concurrently filtered. The effects that are implemented
include of echo, chorus, overdrive (a type of distortion).
Had time permitted so, more complex effects such as
phaser and flange would have been implemented.

Each filter has its own digital transfer function which
can be translated to a difference equation. This results
in the output of the current audio sample being the
weighted sum of some number of past samples and
the current sample. Noise present in the filtered digital

signal can reduced using dithering. The outputs of each
of the parallel filters are then added and normalised (to
prevent overflow) to give a single output value.

Input signals from the user interface (i.e. buttons
and switches) are be used to select and dynamically
change effect and filter parameters. Two options were
considered to allow real-time changes in parameters. The
first is storing a table of pre-calculated filter coefficients
with different cutoffs or other features, and dynamically
selecting the desired filter tap weights based on a user
input. An alternative is to calculate filter coefficients
dynamically by using linear interpolation of existing
coefficients at known cutoffs. This method is more
efficient, but filter performance suffered. The chosen
method was the storage of different filter coefficients,
the values changing on user input, i.e. button presses.

After all audio effects are applied, the digital audio
stream is converted to a PWM waveform. The mono
audio output jack on the Nexys 4 has a built-in 4th
order Butterworth low pass filter. Figure 5 shows the
conversion performed by the on-board filter.



5

Fig. 5. Effect of integrating a PWM signal to obtain a continuous
analogue signal [6]

The PWM waveform is fed to the onboard low pass
filter input which effectively integrates it to form an
analogue voltage waveform that is played on an external
speaker connected to the mono audio jack socket of the
Nexys 4.

D. Simplified design

In the case that the filtering fails to meet real-time
requirements, i.e. the system latency is perceptible to
the human ear, or the project falls behind schedule, some
requirements could be relaxed. The options are:

1) Reducing the order of filters, and limit numbers of
filters that can be active at a time

2) Reducing the sampling resolution to 8 bits.
3) Deprioritising noise shaping, abandoning the at-

tempt to increase the apparent output resolution.
4) Reducing the sampling frequency to 30 kHz, as a

last resort.
Of these options, only one requirement was relaxed, i.e.
noise shaping.

IV. METHODOLOGY

A. Audio input

The audio input was of the form of an analog
waveform, fed using an auxiliary cable from a host
device streaming the audio file. Before being digitised
by the Nexys 4’s on-board ADC, the signal had to
be conditioned for sampling. To meet the Nyquist
criteria, a low pass filter was needed to ensure that all
frequencies above 20kHz (maximum audible frequency)
were attenuated. Furthermore, the ADC of the device
has an operating range of [0:1]V in unipolar mode, and
thus attenuation of the input signal was necessary. It
was discovered that the output voltage from a host aux
port is within the range of 1-2Vpp, ranging from -1V to
1V. Thus the input signal was first given a DC offset of
1V, and then fed into a voltage divider to attenuate the
voltage by a factor of 2.

Thereafter, the conditioned input signal was fed
into the ADC of the device. The ADC was set to sample
at 44.1 kHz. The ADC produces 12-bit samples from
the analogue waveform, however, the Nexys 4 makes
use of 16-bit words, thus, zeros were appended to the 4

least significant bits of the sampled value. The sampled
values were now ready for for storage in the DDR
RAM as well as digital filtering.

The DDR RAM on the Nexys 4 DDR has a very
fast read and write period compared to the sampling
frequency of 44.1kHz. This enabled the storage of the
current audio sample as well as the retrieval of 15 past
audio samples to use in the digital filtering stage. The
128MiB storage space is also more than enough for
the 1 second, or 44100 samples of audio stored in the
prototype design.

B. Digital filtering

Upon receiving samples from the ADC, the Nexys 4
then fed current and previous sample values to each of
the implemented digital effects. All past samples had to
be fetched from the DDR2 RAM. The following effects
were implemented:

1) Reverberation: Reverberation is essentially a dense
series of decaying echoes. Reverberation was achieved
with the following configuration:

Fig. 6. Filter configuration for reverberation [7]

The configuration represents a comb filter (feed-
forward loop). This was essentially the current
sample multiplied by past samples, represented as
z-N, modulated with a decaying exponential, in the
form of filter coefficients, gN. The decay speed of the
exponential determines the strength of reverberation
present in the output.

The code shown in listing 1 was used for reverberation.
Since the Nexys 4 does not use floating point

precision, multiplication by a floating point was done
by first multiplying by an integer and then dividing
by another integer, the quotient of which produce the



6

desired floating point coefficient. Normalisation of the
output of the addition of samples was performed to
assure the result would not cause an overflow in the
16-bit output register.

module reverb(
input clk,
input [15:0] sample0,
input [15:0] sample1,
input [15:0] sample2,
input [15:0] sample3,
input [15:0] sample4,
input [2:0] decay_fact,
input [15:0] current,
output reg [15:0] reverb_out

);
integer out=0;
always @ (posedge(clk)) begin

out=current+(95*sample0)/100+(50*sample1)/100+(20*sample2)/100+(5*sample3)
/100+(2*sample2)/100;
reverb_out = (100*out)/272;

end
endmodule

Listing 1. Verilog code for reverberation

2) Overdrive: Overdrive is a distortion effect. Over-
drive was implemented by means of hard clipping, or
thresholding of the signal, as displayed below:

Fig. 7. Signal clipping

For a unique overdrive effect, it was decided that
instead of implementing the standard hard-clipping, any
value above the given threshold would be set to the
maximum value, rather than the threshold value, creating
a louder and rougher distortion effect for maximum
overdrive. The code for overdrive is shown below:
module overdrive(

input clk,
input [15:0] current,
output reg [15:0] overdrive
);

always @(posedge(clk)) begin
integer out=0;
if(current>45000) out=65000;
else out=current;
overdrive=out;

end
endmodule

Listing 2. Verilog code for overdrive

3) Echo: Echo is a simple audio effect, in that it is just
a delayed, reduced amplitude version of the signal mixed
with itself. The echo delay calculation is as follows:

d[n] =
1

fs
×Ds (3)

where d[n] is the delay in seconds, fs is the sampling
frequency and Ds is the delay in samples. Finally, echo
was created as shown in the figure below.

Fig. 8. Filter configuration for echo

The code used for echo can be seen in listing 3
below.
A right shift by one bit, equivalent to division by 2, was
performed on the output variable, out, before sending it
into the echo output register. This was to normalise the
output to 16-bit to ensure it did not overflow the output
register. A shift was used instead of division as shifting
is a lot faster, and far more easily implementable on an
FPGA than division.

module echo(
input clock,
input [15:0] delay_samp,
input [15:0] curr_samp,
output reg [15:0] echo
);
integer out = 0;
always @ (posedge(clock)) begin

out = curr_samp + delay_samp;
echo = out>>1;

end
endmodule

Listing 3. Verilog code for echo

4) Chorus: Chorus is an effect which takes one
sound and makes it sound like many sounds. This was
implemented by adding several delayed versions of the
sample with itself to give a chorus like effect, with the
constraint that the delay must fall within a delay interval
of 10-25ms.

Such an effect can be implemented as shown in the
figure below:

Fig. 9. Filter configuration for chorus



7

Chorus is similar to reverb in that it uses a summa-
tion of equally spaced apart delayed samples, however,
chorus does not make use of a decay which prevents the
’bouncing’ effect caused from reverberation. The code
used for chorus is shown in the listing below.
module chorus(

input clk,
input [15:0] sample0,
input [15:0] sample1,
input [15:0] sample2,
input [15:0] sample3,
input [15:0] sample4,
input [15:0] current,
output reg [15:0] chorus_out
);
integer out=0;
always @ (posedge(clk)) begin

out=sample0+sample1+sample2+sample3+sample4+current;
chorus_out=out/6;

end
endmodule

Listing 4. Verilog code for chorus

C. User input

All effects, save chorus, were made adjustable by
means of buttons found on the Nexys 4. Each effect was
given 5 ’states’ that it could be in at any given time.
The state represents a different strength in the effect,
with state 1 being the lowest strength state, and state 5
being the highest strength state. Each effect was allocated
a button where, when pushed, incremented the state
register for the effect, which altered the effect strength.
The state of each effect was also displayed on the seven
segment display on the Nexys 4, which allowed the user
to observe which state the effect was in, and hence,
allowed the user to gauge the current strength of the
effect. The code for the state control is shown below.

if (btns[‘LEFT] == 1) begin //LEFT pressed
echo_state = echo_state+1; //increment echo state
if (echo_state > 4) echo_state = 0; //cycle state

end

else if (btns[‘RIGHT] == 1) begin //RIGHT pressed
reverb_state=reverb_state+1;
if(reverb_state>4) reverb_state=0;

end

else if (btns[‘UP] == 1) begin //UP pressed
overdive_state=overdive_state+1;
if(overdive_state>4) overdive_state=0;

end

Listing 5. Verilog code for effect control

D. Noise shaping

Due to time constraints, it was not possible to get-
ting a working implementation of noise shaping. Noise
shaping, and how it could have been implemented, will
be discussed in the conclusions and recommendations
section of the report.

E. PWM output

Once the audio signal had passed through the filters,
it was modulated using PWM. The PWM waveform
had a frequency equal to that of the sampling frequency,

44100Hz. As stated above, the clock speed requirement
for a 12-bit, 44.1kHz PWM is almost two times higher
than that of the FPGA’s clock. Thus, the final bit of
the signal will be truncated, converting the samples
into 11-bit samples. This reduces the clock-speed
requirement by a factor of 2.

The PWM wave created from the audio stream
was then fed to the mono audio jack of the Nexys
4, which contains a 4th order Butterworth low pass
filter. The low pass filter acted as an integrator for the
PWM signal, yielding the average of each cycle. This
ultimately reconstructed the audio signal, which was
then outputted to external speakers. The code for the
PWM output is shown below.

module pwm_module(
input clk,
input [10:0] PWM_in,
output reg PWM_out
);
reg [10:0]new_pwm=0;
reg [10:0] PWM_ramp=0;
always @(posedge clk)
begin

if (PWM_ramp==0)new_pwm<=PWM_in;
PWM_ramp <= PWM_ramp + 1’b1;
PWM_out<=(new_pwm>PWM_ramp);

end
endmodule

Listing 6. Verilog code for PWM output

F. Golden Measure

For the golden measure, all filters and effects men-
tioned above were coded in octave, and performed in
sequential fashion. A random array of 44100 random
values between 1 and 65535 values was created, to
simulate the one second of samples stored in RAM.
Effects were then performed using the different delayed
samples from the created array. The total time taken for
an output to be generated after all filters were completed
was measured. The experiment was repeated 1000 times
in a loop and the average time was taken. The code for
the golden measure is shown below.
function [Time] = filters ()

wave=rand(44100,1)*65535; #"16-bit audio file"
current=wave(1);
out=0;
Time=0;
for i = 1:1000

tic;

out+=(current+0.95*wave(100)+0.7*wave(200)+0.5*wave(300)+0.38*wave(300)+0.28*
wave(400))/(1+0.95+0.7+0.5+0.38+0.28); #reverb

out+=(current+wave(441)+wave(621)+wave(800)+wave(980)+wave(1160))/6;#chorus
if(current>45000) #distortion
out+=65000; #distortion

else #distortion
out+=current; #distortion

endif;
out+=current+wave(22050); #echo
out=out/4; #normalisation
Time+=toc(); #measure time

endfor
Time=Time/1000;

endfunction

Listing 7. Octave code for golden measure



8

The Verilog code for the Nexys 4 was then simulated
in Vivado to observe the timing of signals, and amount
of time taken for the filters to produce an output. The
golden measure and simulation performances were then
compared to obtain the speed-up of the PADAWAN
system.

V. PROPOSED DEVELOPMENT STRATEGY

The PADAWAN frees up the processor on the host
system by handling audio filtering tasks. These filters
can be made configurable and can be expanded to operate
on multiple channels simultaneously. If the PADAWAN
were to be developed into a commercial product, it would
need a female audio jack input, as well as an Ethernet
port to send and receive digital data. An application
programmer interface (API) will need to be developed
to enable reconfiguration of the PADAWAN by the end
user. This API will accept user level input parameters
and use these to modify or select preconfigured Verilog
code using a specialised compiler or look-up table. The
altered code is then compiled on the host machine and
sent as a bit stream to the PADAWAN. A GUI on the
host computer will be a visual wrapper of the custom API
allowing standard users to reconfigure the PADAWAN.

A. Commercial Uses for the PADAWAN

The PADAWAN can either be used as a standalone
audio processor for use with microphones, instruments
and other devices that output analogue audio via a
standard 3.5mm auxiliary jack. The PADAWAN also
accepts 5.1 channel audio using 3 stereo 3.5mm inputs
connected to GPIO ports on the FPGA. The volume of
the output can be adjusted using a knob connected to a
potentiometer. Additionally, sliders will be used to allow
the selection of different tap weights for each of the
implemented digital filters.
The PADAWAN can also be reconfigured in more detail
using a GUI application running on a host computer such
as a PC. A user can implement and choose custom effects
to port onto the device and the software will generate
the required code and filters to implement the effects.
In addition to changing the number of audio channels
needed, the sampling rate and bit depth of the audio
can also be specified. If analogue output is needed, the
effective bit rate will be limited, due to the 100MHz
clock speed of the Artix-7 FPGA.

B. Proposed commercial design

A custom board similar to the Nexys 4 DDR with an
Artix-7 FPGA, an Ethernet port, 3 input and and 3 output

3.5mm audio jacks together with knobs and sliders is
proposed. The custom board will also need memory, in
the form of DDRAM. A controller interface is needed
to interpret digital data received via the Ethernet con-
nection. This data can either be audio or configuration
commands. The configuration commands will be in the
form of a bit stream that will be sent via JTAG to the
Artix-7.
The PADAWAN will have three modes of operation the
first of which is reconfiguration mode. Depending on
user specified variables, at the end of the reconfiguration
process, new digital filter tap weights are computed and
synthesised on the Artix-7. The I/O mode is also chosen
as either digital or analogue. In digital input output mode,
input audio is sent from a host computer via Ethernet.
The digital audio is then filtered and sent back over
Ethernet. In digital mode, a PWM signal is not generated
and no ADC is necessary, allowing for the filtering of
higher fidelity sound e.g. 16 or 24-bit audio.
In analogue mode, mono, stereo or 5.1 channel audio
is fed to the system, the audio is sampled, filtered and
output on the separate output auxiliary jacks.

VI. EXPERIMENTS AND RESULTS

Octave source code that performs the filtering was
implemented and used as a golden measure for per-
formance, by executing the processing on a desktop
computer. After implementation, the performance of
this golden measure was compared to the wall clock
time of our FPGA implementation. The golden measure
implemented all filters in sequential fashion, timing the
amount of time it took to perform all filter calculations
on a single sample. The experiment was repeated 100
times and an average of 54µs. This was actually found
to be too slow for real-time audio processing, where
filtering calculations need to be performed within the
space of 1 sampling period, which is 22µs for 44100Hz.
On the other hand, through timing simulations of the
Verilog code, it was found that to perform all filtering
operations, the simulation took 729ns. This results in
a speed-up of 74 over the golden measure. Moreover,
this is more than adequate for the real-time constraint
of audio processing. This is mainly due to the massively
parallel operation of the filters, where not only were the
filters parallelized, but the operations within filters as
well.
To ensure that the PADAWAN outputs an appropriate
analogue waveform to the mono audio output, we used
an oscilloscope to plot the output signal and compare
it to the input signal with all filters disabled. Because
the input and output waveforms matched closely, the
modulation and integration of the PWM signal was



9

verified as correct. Thereafter, the dithering and noise
shaping of the input signal would have been tested by
means of a comparison. The dithering would be initially
tested by comparing the output signal with dithering to
that without, and all filters disabled. If the harmonics
and distortion found within the non-dithering output was
found to be eliminated in the output that used dithering,
then the dithering would be proved to work correctly.
The noise shaping of the dithering can then be checked
in the same manner, where outputs are compared. If the
noise level is lower at specific frequency bands in the
noise shaped output, compared to the unshaped output,
then the noise shaping will have been implemented
correctly.
Furthermore, specific filters used to create audio effects
such as echo, reverberation, chorus and overdrive were
verified by means of a comparison to an already existing
effects generator on a computer. The same audio effects
implemented on the PADAWAN system were created
on a computer and compared to the effects generated
by the PADAWAN system. The audible similarity of
the computer and PADAWAN effects determined that
the filters were successful in their ability to create the
desired effects. The dynamic adjustment of the filters
was tested by simply adjusting them, and verifying that
clearly audible changes to the audio effects occurred.

VII. CONCLUSIONS AND RECOMMENDATIONS

The final step in the development of the PADAWAN
was the implementation of a Verilog prototype synthe-
sised on the Nexys 4 DDR. A main Verilog module
initiating the XADC with the correct parameters as well
as specifying the pin assignments and module intercon-
nects was developed. The audio effects were simulated in
Octave and implemented as individual Verilog modules.
The Octave simulations also served as a golden measure
for performance comparison. A PWM Verilog module
taking the sampling rate and bit depth into account was
also developed.
User input peripherals were used to enable the dynamic
selection and adjustment of audio effects. Once all the
Verilog modules had been written and the signals routed
between them correctly, the design was be synthesised
and tested. After ensuring that the output was as ex-
pected from simulations using an oscilloscope and that
the switch and button interface affected the output, the
performance of the design was evaluated. There was a
significant speedup in the filtering tasks, implying that
the PADAWAN can be accurately referred to as a parallel
hardware accelerator.
The PADAWAN device can be improved in many dif-
ferent facets. Firstly, stereo or surround sound would

make the device much more marketable. This would
involve parallel filtering of the different audio channels,
and implementation of custom low-pass filters, either
high-order analog filters or digital filters implemented
in Verilog. The low-pass filtering is necessary for the
audio output, since the device generates a PWM output,
which needs to be converted to an anologue voltage.
Secondly, the functionality of the device can be expanded
by offering the feature of a sound equaliser, so that the
user can use sliders to boost different audio frequency
ranges. This can be enhanced further by the addition of
the ability to apply effects on isolated bands of interest,
making the device suitable for applications such as
denoising a wide range of analog frequencies by isolating
noisy bands. Finally, the initial plan was to implement
noise shaping to change the power spectral density of the
output signal such that the noise power was reduced in
audible frequency ranges, and correspondingly increased
in higher frequencies. This can be a starting point if an
effort is made to improve the PADAWAN.

REFERENCES

[1] “Audio effects, http://www.mediacollege.com/audio/effects/,”
[2] “Dithering and Noise Shaping, http://downloads.izotope.com/

guides/izotope-dithering-with-ozone.pdf,”
[3] “Design of a Reusable Distributed Arithmetic Filter

and its Application to the Affine Projection Algorithm,
https://smartech.gatech.edu/bitstream/handle/1853/28199/lo_
hawjing_200905_phd.pdf,”

[4] “Nexys-4-DDR-Music-Looper development, https://github.com/
Digilent/Nexys-4-DDR-Music-Looper, date accessed 2017-02-
16,”

[5] “SRAM to DDR Component [Reference.Digilentinc],
https://reference.digilentinc.com/learn/programmable-logic/
tutorials/nexys-4-ddr-sram-to-ddr-component/start urldate:2017-
06-24.”

[6] “PWM Limitation, http://www.ti.com/lit/an/slaa405a/slaa405a.
pdf,”

[7] “Reverberation, https://christianfloisand.wordpress.com/2012/09/
04/digital-reverberation/,”

http://www.mediacollege.com/audio/effects/
http://downloads.izotope.com/guides/izotope-dithering-with-ozone.pdf
http://downloads.izotope.com/guides/izotope-dithering-with-ozone.pdf
https://smartech.gatech.edu/bitstream/handle/1853/28199/lo_hawjing_200905_phd.pdf
https://smartech.gatech.edu/bitstream/handle/1853/28199/lo_hawjing_200905_phd.pdf
https://github.com/Digilent/Nexys-4-DDR-Music-Looper
https://github.com/Digilent/Nexys-4-DDR-Music-Looper
https://reference.digilentinc.com/learn/programmable-logic/tutorials/nexys-4-ddr-sram-to-ddr-component/start
https://reference.digilentinc.com/learn/programmable-logic/tutorials/nexys-4-ddr-sram-to-ddr-component/start
http://www.ti.com/lit/an/slaa405a/slaa405a.pdf
http://www.ti.com/lit/an/slaa405a/slaa405a.pdf
https://christianfloisand.wordpress.com/2012/09/04/digital-reverberation/
https://christianfloisand.wordpress.com/2012/09/04/digital-reverberation/

	Introduction
	Background
	Digital audio filtering
	The issue of computational complexity
	Open-source libraries and the development challenge

	Design
	Pulse width modulation of output signal
	Noise shaping
	Advanced design
	Simplified design

	Methodology
	Audio input
	Digital filtering
	Reverberation
	Overdrive
	Echo
	Chorus

	User input
	Noise shaping
	PWM output
	Golden Measure

	Proposed development strategy
	Commercial Uses for the PADAWAN
	Proposed commercial design

	Experiments and results
	Conclusions and Recommendations
	References

