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Abstract—This paper details the conceptual design of a digital
accelerator that generates an arithmetic sequence based on user
provided input parameters. The idea is to design a parallel
hardware implementation that will provide high performance
computation.

I. INTRODUCTION

An arithmetic sequence is an ordered list of numbers where
each consecutive pair differs by the same constant [1]. Such
a sequence can be represented by equation 1 where i is the
index of the term, a1 is the first term in the sequence and d
is the common difference between two terms.

ai = a1 + (i− 1)d (1)

A. Applications of arithmetic sequences

Arithmetic sequences form part of an image encryption
algorithm proposed by Zhen et.al. [2]. In their algorithm,
arithmetic sequences are generated that have as many elements
as there are pixels in the image. For high-resolution images,
these sequences could have millions of elements. Speeding
up the sequence generation would contribute to improving the
performance of their image processing method.

Another potential application is pattern recognition, which
is an important branch of machine learning [3]. Training a
machine to recognize a pattern often requires providing the
machine with a large set of examples. If sequences can be
generated faster, the machines can be trained more quickly
and accurately to recognize similar sequences. Successful
acceleration of arithmetic sequences could lead to similar
developments for other more complex patterns often used in
machine learning.

Other applications of arithmetic sequences include:
• Frequency generation algorithms [4] [5]
• Arithmetic compression algorithms [6]
• Mathematical design [7]
• Prediction algorithms [8]

B. Computation of arithmetic sequences

An arithmetic sequence can be generated sequentially using
a single loop. Each iteration evaluates equation 1 for a
particular value of i and stores the result. The variable i is
then incremented before the next iteration.

The calculation of one sequence element does not depend on
the value of any other element. Each loop iteration depends
only on the loop index and the global constant parameters
given for the sequence. Each iteration stores its result in a
separate memory location that is not accessed in any other
iteration. The iterations could therefore run simultaneously or
out of order. The resulting sequence would still be correct.
The concurrent implementation could be implemented on a
general-purpose multi-core processor. However, a specialized
hardware accelerator would likely perform better since the
hardware can be customized to fit the task. In the following
sections of this paper, a design of such an accelerator is
presented along with an evaluation of its performance.

II. DESIGN OVERVIEW

The diagram in Figure 1 shows the main hardware
components associated with the digital accelerator
implementation. The CPU, DMA controller and RAM
belong to a host computer while the hardware accelerator
will act as a peripheral device.

The DDR4 RAM has a data rate of 3200 MT/s with a bus
width of 64 bits per module. It has a transfer rate of 21.3
GB/s [9]. This is 170.4 Gbps, which is faster than the Ethernet
connection. The RAM is therefore not a bottleneck.

A. Constraints

The accelerator only handles unsigned integers. No negative
or floating point values are supported. The generated sequence

Fig. 1. Hardware architecture overview



elements are 64-bit unsigned integers. If overflow occurs in the
arithmetic unit, an overflow flag will be pulled high to indicate
the error condition. This flag will stay high until the system is
reset for a new sequence. Overflow can occur at the subtracter
or adder stages (see figure 3)

B. High-level implementation

An overview of the modular view of the hardware
accelerator is shown in Figure 2. The hardware acceleration of
the arithmetic sequence generation algorithm will be achieved
through the use of arithmetic calculation units. The outputs of
the arithmetic units are combined into a single bus and passed
to the Ethernet controller for transmission back to the host.
This is explained further in section III-H.

A control unit keeps track of the element indices being
processed. It manipulates the inputs of the arithmetic units
to calculate the sequence in groups of M elements, where M
is the number of arithmetic units. It raises a done flag when
the whole sequence has been generated. The aim is to have
many arithmetic units to accommodate as much concurrent
computation of arithmetic sequence terms as possible.

In addition to making the accelerator do concurrent
computation, the throughput of data in the process can be
increased through the use of pipelining. This will allow
multiple arithmetic terms to be generated on each processing
cycle.

C. How will the digital accelerator be used

A software application program interface (API) will be
developed for use on the host computer. This API will be
the used to specify the a1, n and d values required to generate
a particular arithmetic sequence. The host computer will store
these values in RAM before sending them via 100 Gbps
Ethernet to the hardware accelerator. The hardware accelerator
will then use these inputs to compute the terms of the
arithmetic sequence. The resulting data will be sent back to
the host computer via 100 Gbps Ethernet. The host computer’s

Fig. 2. Modular overview of accelerator

DMA controller will be used to efficiently access the host
computer’s RAM where the data will be stored without having
to use the host computer’s CPU. The starting memory address
of the sequence in RAM will be sent to the API so it is known
where to access the data. For each new set of inputs provided
to the API, the starting address where the sequence is stored
in RAM will be received by the API.

III. DETAILED DESIGN

The accelerator consists of many arithmetic units and a
single control unit.

Some symbols and their meanings are listed in table I.

A. Arithmetic units

The accelerator should have as many of these arithmetic
units as possible so that the maximum number of sequence
elements can be computed concurrently. Each arithmetic unit
contains its index (N) as a constant value wired into its circuit.
These indices do not need to be fed in as inputs.

An arithmetic unit is split into a sequence block and an
offset block as shown in figure 5.

B. Calculation pipeline

Without pipelining, the maximum clock speed would be
limited by the propagation delay of the entire combinatorial
circuit. With pipelining, the clock speed is only limited by
the combinatorial delay of the single slowest stage in the
pipeline, which is likely to be the multiplier. The pipelined
system would output new data on every clock cycle as long
as the pipeline is kept full. This, combined with the faster
clock, would give a higher throughput than the non-pipelined
system. The sequence and offset blocks both have internal
pipelines as shown in figures 3 and 4, respectively. Pipeline
registers are also added between the two blocks (figure 5). This
is necessary because the offset block introduces latency on
the i input, which could lead to invalid inputs at the sequence
block if it were not pipelined. The combined pipeline forms
the arithmetic unit and is driven by a single clock connected
to all registers. The sequence and offset blocks are explained
individually in the following sections.

C. Sequence block

Each sequence block performs the operations required to
evaluate the expression a1 + (i− 1)d for a single value of i.
This is one subtraction, one multiplication and one addition.

Each sequence block is pipelined with four stages.
A pipeline register is placed between all the arithmetic
operations.

Figure 3 shows a single instance of a sequence block. All
registers are clocked from the same clock signal. Every clock
cycle advances the data to the next stage in the pipeline.

The data valid line is pulled high when the inputs are valid.
Its value is then clocked through the pipeline and becomes
high at the output stage to indicate that the output is valid and
ready to be stored or transmitted.



TABLE I
SYMBOLS USED IN THE DESIGN DESCRIPTION

Symbol Meaning
M Number of physical arithmetic units on the accelerator
N Index of each arithmetic unit (1 to M)
n Number of elements to calculate (given as input)
i Index of each computed element in the sequence (1 to n)

Fig. 3. Sequence block to evaluate a(i)

D. Offset block

The accelerator supports cases where n > M , i.e. where
the required sequence has more elements than the number of
arithmetic units. This is implemented by running calculations
sequentially in groups of M . After the first M calculations
have been clocked in, the values of i must be increased
by M for the subsequent group of calculations. The first
group of calculations are started with 1 ≤ i ≤ M . The
second group will start with M + 1 ≤ i ≤ 2M , and so
forth. Each offset block receives an input called groupOffset
(generated by the control unit). Each offset block will calculate
i = N+groupOffset before placing the new value of i onto
the input of the sequence block.

The offset block is added as an additional pipeline stage in
front of each sequence block. The implementation of an offset
block can be seen in figure 4.

Figure 5 shows how the sequence and offset blocks are
connected to form a single arithmetic unit. It also shows an

Fig. 4. Offset block to handle n > M cases

Ethernet core, which is discussed in section III-H.

E. Control unit

The control unit performs the following functions:
1) starts the calculation process in response to the ’activate’

input line
2) counts up in steps of M to maintain the groupOffset

value for each clock cycle
3) stops the calculation when n sequence elements have

been calculated
4) receives the sequence parameters from the PCIe

interface
5) sends the generated sequence out on the PCIe interface
Figure 6 illustrates the implementation of the first three

points listed above. When the ’Activate’ input is pulled high,
the 32-bit counter is reset to zero and the ’Done’ flag is pulled
low. On every clock edge, the counter increments by M to
reflect the new groupOffset value. When the offset becomes
greater than n+ 6M , the done flag is raised and the counter
is reset. This threshold value was chosen because there are
six pipeline register stages between the control unit and the
outputs of the arithmetic units. The control unit has to wait
six clock cycles after sending the last groupOffset value before
it can raise the done flag. Each clock cycle increments the
counter by M , hence the threshold n+ 6M .

The valid flag is kept high as long as the activate flag stays
high and the done flag is still low, i.e. the inputs stay valid
until all calculations are done or the system is deactivated.

F. Example calculation

The process outlined above can be illustrated by means of
a simple example. Consider a scenario with parameters as
in Table II. In this case, the generated sequence should be
{0, 2, 4, 6}. Before computation starts, the values 0 and 2 are
placed on all the arithmetic units’ a1 and d inputs, respectively.
The value 4 is placed on the control unit’s n input. To start the
calculation, the control unit’s activate input is pulled high and
the system is clocked. On the first clock edge, the groupOffset
output will be 0 since the counter was reset. This value, along
with a raised valid line, is clocked into the offset blocks. On
the next clock, the two offset blocks will output values of 1
and 2 at their respective i outputs. These values are clocked
into the i inputs of the sequence block. The subsequent three

Fig. 5. Combined Arithmetic Unit



Fig. 6. Control Unit: Counter and flags

clock edges will drive the actual calculation, after which the
two sequence blocks will present 0 and 2 at their respective
a(i) outputs. Upon detecting the raised valid flag, the system
sends the values to the Ethernet controller for transmission.

Meanwhile, the counter in the control unit has counted up
by M = 2, presenting a value of 2 at its groupOffset output.
This is clocked into the offset blocks, which leads to values
of 3 and 4 at their i outputs. On subsequent clock edges, the
sequence blocks repeat the calculation with the incremented
i values, resulting a(i) outputs of 4 and 6, which are sent to
the Ethernet controller.

When the control unit senses that groupOffset is larger than
4 + (6× 2), it raises the done flag to signal completion.

G. FPGA-based implementation

It was decided to implement the above designs on a
high-end FPGA. The FPGA will include hardware multipliers
(the more the better) capable of multiplying operands of at
least 32 bits wide. This allows a multiply operation to happen
in a single clock cycle. One or more phase-locked loops would
also be useful if the clock speed needs to be reduced.

H. Communication over Ethernet

It was decided to use 100 Gbps Ethernet as the
communication channel between the host and accelerator.
Fiber optic cables will be used as defined in IEEE standard
802.3 [10]. Specifically, Amendment 3 of this standard is used,
which specifies 100 Gbps Ethernet over multi mode fiber-optic
cables (100GBASE-SR4) [11].

Some FPGA manufacturers provide off-the-shelf Ethernet
controllers as soft IP cores that can be programmed onto the
FPGA. For example, Altera provides an Ethernet MAC device
as one of its MegaCore IP products [12]. A similar approach
will be used in this design.

Altera’s 100 G Ethernet core has a client-facing bus width
of 320 bits (i.e. the switching fabric can send 320 bits to
the Ethernet controller in a single transfer) [12]. To meet
the 100 Gbps data rate, these transfers must be clocked at
312.5 MHz (320× 312.5× 106bps = 100Gbps).

A 320-bit bus can send five 64-bit values in a single
transfer. At 312.5 MHz, five arithmetic units would saturate
the 100 Gbps Ethernet connection. There is no point in having

TABLE II
VALUES FOR SIMPLE EXAMPLE

Symbol Value Comments
M 2 Accelerator has 2 arithmetic units
a1 0 Value of first element
d 2 Constant difference
n 4 Generate a sequence with 4 elements

more than five arithmetic units on the accelerator if 100 G
Ethernet is the bottleneck. This constraint means that buffering
is not required on the accelerator. Sequence output values
from the five arithmetic units are combined into a 320-bit bus
and connected to the Ethernet controller directly, as shown in
figure 1.

IV. PROTOTYPE IMPLEMENTATION METHODOLOGY

A prototype was implemented in Verilog on the Digilent
Nexys 3 development board [13] containing a Xilinx Spartan
6 FPGA [14]. The implementation largely followed the
conceptual design. The sequence and offset blocks of the
arithmetic unit were implemented as Verilog modules, as well
as the control unit. There are 20 parallel arithmetic units on
the prototype, each generating a 64-bit result. We found the
number of arithmetic units to be limited by the MUXCY
(carry chain) units available on the Spartan 6’s logic blocks
(SLICEM and SLICEL). These MUXCY blocks are used for
fast lookahead carry inside the adders and multipliers [15]. At
20 parallel streams, 87% of the available carry chains were
used.

The system was clocked at 100 MHz. A calculation
throughput of 128 Gbps is therefore expected. The pipeline
stages were implemented as in the conceptual design.

The prototype did differ from the conceptual design in the
following respects:

A. UART communication

Time constraints prevented us from implementing an
Ethernet connection. Instead, UART over USB was used to
send the generated sequence elements back to the host. The
bytes of each 64-bit value are transmitted in little-endian order
(least significant byte first). Our UART module communicates
at 115,200 bps, which is considerably slower than 100 Gbps
Ethernet.

B. Output buffers

Since the UART link to the host is much slower than the
calculation throughput, the generated values were buffered on
the FPGA and sent out over UART after all calculations were
complete. A 1 Kb memory block was connected to the output
of each arithmetic unit as shown in figure 7. The control
unit contains a register for the current memory address. On
every clock cycle, the 20 calculated values are saved into the
same address on each parallel memory block. The memory
address is then incremented for the next group of M values.
The memory address is placed on the bus labeled ”Control
Bus” in figure 7. From there, it advances through the pipeline



along with the other control signals such as the valid line,
groupOffset value, etc. as discussed in section III.

V. PROTOTYPE EXPERIMENTATION

After developing the hardware accelerator prototype, it had
to be tested to determine its correctness and performance. It
was decided to time the prototype’s calculation for sequences
of various lengths and compare it to the execution times of the
golden measure. This involved developing a golden measure
program as well as a method to accurately time the processing
of the prototype. In order to obtain comparable results, the
input parameters shown in Table III were set to be constant
for all tests with only the sequence length being varied.

A. Golden measure
For the golden measure, a sequential C program was

written to generate arithmetic sequences based on user input
parameters and time how long a CPU takes to generate the
sequence. The timing was done using special timer modules
to accurately measure the processing time only. The golden
measure testing was done on a computer with an 2.2 GHz
Intel Core i5-5200U [16] CPU and 4 GB of RAM.

B. Prototype testing
The correctness of the sequence elements was verified by

sending the data over UART to a computer and inspecting
the data received over UART by comparing a sample set of
them to the corresponding values from the golden measure C
program.

The sequence generation runtimes for the prototype were
obtained by routing the control unit’s done signal to one of
the Nexys 3 PMOD pins and probing it with an oscilloscope. A
falling edge was detected on this pin when calculation starts,
and a rising edge appeared upon completion. The distance
between these edges were then measured on an oscilloscope
trace and the elapsed time could then be accurately measured
so that it could be compared to the golden measure.

An example of one of the oscilloscope traces can be seen
in Figure 8. In that case, the oscilloscope was set to 4.3 µs
per horizontal division. The distance between the two done
line edges is therefore 8.6 µs, corresponding to a sequence of
1 million elements as listed in table IV.

Fig. 7. Output buffer memory blocks

TABLE III
SYMBOLS USED IN THE DESIGN DESCRIPTION

Parameter Value
M (number of arithmetic units) 20
a1 (first term) 255
d (common difference) 10

Fig. 8. Sample screen capture of oscilloscope trace with 20 ns horizontal
divisions

VI. TESTING RESULTS

The resulting golden measure runtimes along with the
prototype runtimes for generating arithmetic sequences of
different lengths (based on the input parameters in Table III)
are shown in Table IV. It can be seen that the runtimes of
the prototype were faster, resulting in an increasing speed-up
being obtained for increasing lengths of sequences. These
results demonstrate that the digital accelerator prototype works
successfully.

VII. CONCLUSION

The conceptual design of a digital hardware accelerator
to generate arithmetic sequences has been detailed in this
paper. Such a device is capable of contributing performance
increases to applications which use arithmetic sequences in
their algorithms. A prototype hardware accelerator was then
implemented using a Nexys 3 evaluation board with a Xilinx
Spartan 6 FPGA. The prototype implementation was based on
the principles of the conceptual hardware accelerator design. In
order to test the prototype, a golden measure was developed in
the form of a sequential CPU based C program. The sequence
generation runtimes of the two were then measured and
compared with the prototype producing a significant speed-up
compared to the golden measure. This demonstrated that the
hardware accelerator prototype was successful and stands as
a working proof of concept of the original conceptual design.

VIII. FUTURE WORK AND PROTOTYPE ENHANCEMENTS

In order to further enhance the developed prototype the
following could be investigated:



TABLE IV
TEST RESULTS

Number of elements Golden measure [s] Prototype [s] Speed-up
10 2.70× 10−7 1.24× 10−7 1.90

100 6.50× 10−7 1.91× 10−7 3.40
1,000 2.80× 10−6 6.40× 10−7 4.38

10,000 3.50× 10−5 5.10× 10−6 6.81
100,000 2.80× 10−4 1.73× 10−5 167.06

1,000,000 5.40× 10−3 8.60× 10−6 295.34
10,000,000 2.73× 10−2 1.94× 10−5 1,405.67

100,000,000 2.76× 10−1 2.89× 10−5 9,532.87

• Using a larger FPGA to accommodate more arithmetic
modules, bits per sequence element and memory blocks

• Implementing high speed parallel output data using
100 Gb Ethernet

• Extending the design to work with floating point and
negative numbers
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