

 1

Faculty of Engineering and the Built Environment

Department of Electrical Engineering

2023 GA/ELO Course Handout: EEE4120F as at 1 Mar 2023

Course Name: EEE4120F High Performance Embedded Systems

SAQA Credits: 16 credits

Pre-requisites: EEE3096S

Co-requisites: None

Course convenor: Simon WINBERG

Email address: simon.winberg@uct.ac.za

Office location: Room 6.13, Level 6, Menzies Building

Consultation hours: Wed/Thus 10am bookings site: https://www.supersaas.com/schedule/swinberg/Consultation

Course lecturer: Simon WINBERG

Teaching assistant: Chris HILL

Teaching Mode:
Blended and Online-suited – a combination of Differentiated Instruction (using a variety of resources from
which to learn) and Expeditionary learning (where students can try different approaches to learn a topic).

Learning activities:
A combination of methods: lecture slides, recorded annotations in lectures / supplementary podcases,
example problem-solution scenarios, design case-studies.
Week is planned to follow a scenario:

Weekly Routine:

Monday : Update on learning, lessons and assignment plans for the week.
 11h00-13h00 : Prac Option 1 (to discuss in Lecture 1)
Tuesday : 11h00-13h00 : Prac Option 2 (to discuss in Lecture 1)
Wednesday: 14h00-16h00 Lecture session and learning materials explained
Thursday: 14h00-15h00 Lecture session / interlude to prac / quiz
 14h00-15h00 Prac Session A (main prac session, start of new prac)

Laboratory approach
Blended: Student can choose to either use labs in the department (Blue Lab) or to work on their own
computers / Raspberry Pi, or to use a combination of these approaches.

Laboratory assistance Tutors will aim to be available to assist during scheduled slots using Discord https://discord.com/

Course website
http://ocw.ee.uct.ac.za/courses/EEE4120F/ : learning, lecture, assignment and project resources
https://amathuba.uct.ac.za/d2l/home/14448 : submit things here, grades

Course objectives

The objective of this course is to develop an understanding of the concepts involved in the design and development of high performance
special-purpose embedded computing systems (or HPES systems), which has become known in the literature as the development practice of
“High Performance Embedded Computing” (HPEC). This course incorporates a focus on the development of custom digital accelerators which
are becoming more commonly use in high-speed HPEC systems. HPEC is essentially a generation beyond the more traditional subject of
embedded system development – and is strongly aligned to recent development trends of university and in industry. With the increase in
computing power, available in today's embedded microcontrollers and special-purpose processing system, the design of many modern
embedded systems is no longer constrained to single microcontrollers or DSP chips, but are to an increasing extent harnessing the computing
resources that are available in new technologies such as FPGAs, Graphics Processor Units (GPUs) and multi-core processors. Your smartphone
is probably a case in point, with its multiprocessor and graphics accelerator. Previously (pre +- 2005), embedded systems and embedded
software development were considered among the hardest form of computer application design – but the practices of HPEC are disrupting this
view. In recent years, the complexity of the hardware and software designs of HPEC systems have surpassed that of the more traditional views
of embedded systems. Examples of HPEC systems include software defined radio systems (e.g., telecoms base stations that can change its radio
processing methods in software) and radar systems (e.g., array of GPUs doing simultaneous multiband detection).

https://www.supersaas.com/schedule/swinberg/Consultation
https://discord.com/
http://ocw.ee.uct.ac.za/courses/EEE4120F/
https://amathuba.uct.ac.za/d2l/home/14448

 2

Learning outcomes

S t u d en ts s u cces s fu l l y co mp l et i n g t h is co u rs e w i l l h ave t h e fo l l o w in g :

Ex
it

 le
ve

l

LO
 1

LO
 2

LO
 3

LO
 4

LO
 5

LO
 6

LO
 7

LO
 8

LO
 9

LO
10

LO
11

A. Knowledge (Information plus Understanding)

1. Parallel computing fundamentals, concept of automatic parallelism; understand the
difference between microprocessor-based computer systems, embedded computer
systems and reconfigurable computers. Concepts of temporal and spatial
programming. Current trend in high performance embedded computing (HPEC).

N 8

2. Patterns in parallel computing and HPEC design. Knowledgeable of the steps in
designing parallel programs (these steps are generic to both microprocessor- and
FPGA-based/embedded parallel systems). Understanding of parallel design patterns.

N 8 8

3. Theories of benchmarking digital systems (incl. speed and power benchmarking).

Parallel programming models (data parallel model; message passing model, etc.).
Understanding of the common parallel architecture models (including Von Neumann
architecture, Flynn’s taxonomy, etc.), memory access architecture models. Can draw
on knowledge of case studies to illustrate some of these architecture models.

N 8 8 8

4. Knowledge of computer subsystems, including DMA, bus management systems,
memory types and memory management systems and interrupts among others.
Fundamentals of microprocessor-based and FPGA-based reconfigurable computing.
Knowledge of the fundamental reconfigurable computing building blocks.
Understand theory and limitations of using an automatic C -> HDL conversion tool to
translate a specialised form of C code to HDL.

N 8 8 8

B. Skills (Application of Knowledge)

1. Can develop parallel / threaded programs in C or C++, able to compile and run this on
a standard digital computer architecture. Able to translate a complex sequential
algorithm into a parallel version, and can implement and run the resultant algorithm
on a computer cluster using e.g. MPI. Use of heterogeneous computer, comprising
e.g. multicore standard architecture and Programming GPU running highly parallel
code. Can design and code FPGA-based firmware suited for deployment on a
reconfigurable computer platform (i.e., towards prototyping custom HPEC system).

N 8 8

2. Benchmarking of parallel computer systems (microprocessor-based systems and
systems making use of GPUs). Benchmarking embedded high performance
computing systems (knowledgeable of how to do so for microprocessor computer
systems and system incorporating FPGA-based or GPU-based accelerator module).

N 8 8

3. Ability to describe HPEC design ideas. Can describe (in writing with figures) how to go
about designing a HPEC system, or HPEC subsystems, that solves an open-ended
application development problem. (Tested in Conceptual Assignment).

Y 8 8 8

4. Able to validate and verify digital system design. Can use correlation to compare
results produced by different platforms. Able to do performance analyses on the
design of HPEC systems including analysis of communication performance between
computer systems. Given a detailed design of a HPEC system, the student can
perform paper-based calculations to estimate the performance of the HPEC system.
Use of this data to identify performance bottlenecks, areas to optimise design costs,
amongst suggesting possible other improvement to the given HPEC design.

Y 8

5. Able to understand and describe the principle characteristics of a digital system, its
overall design process, design software and hardware for such systems.

N 8 8

C. Values and Attitudes

1. Appreciation of digital system / HPEC design to support real time applications N 8

2. Stimulate an interest in this branch of Electrical Engineering / Computer Engineering. N 8 8

3. Able to contend with open-ended problems requiring thinking and intuition. N

4. Appreciate the need of teamwork in digital systems design and implementation. N 8

 3

The course addresses the following Graduate Attribute exit level outcomes

Main outcome Activities, skills or abilities contributing to
the main outcome/objective

Alignment of assessment with relevant GA description

Graduate Attribute (GA) /
Exit-level Outcome 2:

Application of scientific and
engineering knowledge

Apply knowledge of
mathematics, natural
sciences, engineering
fundamentals and an
engineering specialty to
solve complex engineering
problems.

1. A systematic, theory-based understanding
of the natural sciences applicable to the
discipline;

2. Conceptually-based mathematics,
numerical analysis, statistics and formal
aspects of computer and information
science to support analysis and modelling
applicable to the discipline;

3. A systematic, theory-based formulation of
engineering fundamentals required in the
engineering discipline;

4. Engineering specialist knowledge that
provides theoretical frameworks and
bodies of knowledge for the accepted
practice areas in the engineering discipline;
much is at the forefront of the discipline.

5. Mathematics, natural science and
engineering sciences are applied in formal
analysis and modelling of engineering
situations, and for reasoning about and
conceptualizing engineering problems.

1. Students are tasked with understanding the concept of natural
phenomenon provided in the GA2 Conceptual Assignment
description. The student is provided readings and weblinks to help
them assimilate the concept explained in this reading assignment.
The student’s comprehension of this phenomenon is assessed in the
‘GA2: Comprehension Test’ based on Pracs 1 and 2, which has a time-
limited test with an essay component.

2. The student is then tasked with ‘GA2 Problem Solving Questions’ that
lead from the GA2 Concept Assignment description, in which the
natural phenomenon and concept presented for point (1) above is
formulated into a slightly more refined, but still (ill-formed) product
description presented to the student. The student then draws on
engineering knowledge, maths and understanding of natural science
and scientific method, to suggest a more refined ‘proposed
implementation strategy’ for building and testing the product. Note:
this proposal is only expressed in a document (not implemented or
needing executable code provided). Part of this document is to
explain how this solution can be benchmarked and validated (e.g., by
model testing or setting up a ‘golden measure’).
{ALTERNATIVELY: Students may instead be asked to critique a small,
ill-formed design concept (a case study). The student will need to use
a scientific approach to report on their approach the anticipated
performance of their solution to validate its operation (note both
alternatives are more conceptual activities, not necessarily requiring
complete implementation and testing of a developed prototype).}

3. Students will be required to complete the ‘GA2: Validation Essay’
used o validate the student’s understanding of their solution and
approaches used in #2 above (Note: this essay test is to ensures
students understood and applied themselves in parts 1 and 2 above;
students that did not engage in part 2 particularly (e.g., relying on
classmates to do all the work and explain what would do) are unlikely
to pass this test which would result in a DPR).

Information specific to Graduate Attributes

GA Outcome 2:

Where and how is this learning outcome assessed?

Students will be individually evaluated in tests forming part of the GA2 Conceptual Assignment described above; these will evaluate each
student’s ability in the application of scientific and engineering knowledge concerned in this assignment.

What constitutes satisfactory performance?

Passing the GA2 assessment test. Students will need to pass both the ‘GA2: Comprehension Test’ (i.e., knowledge of the phenomenon and
design approach) and ‘GA2: Validation Essay’ (i.e., understanding of method and tools to develop and validate a design solution). To pass the
GA2 requirement (and receive a DP for this course), the student must achieve a mark of 50% or more for each part of the GA2 Conceptual
Assignment. For any part that is failed, a second opportunity will be provided to pass that part but the recorded mark use in calculating the
coursework grade for the course will use the mark obtained for the first attempt. Student that do not complete one of the parts will fail the
assignment (and receive a DPR) unless they provide a valid excuse for having not completed the part concerned.

What strategy is to be followed should this learning outcome not be satisfactorily attained?

Students are allowed a maximum of two additional attempts or re-submissions of work to meet the GA, failing which they get a Duly
Performed Refusal (DPR), and cannot write the course examination.

 4

Detailed course content

The course is divided into two parts: Part A and Part B. Part A runs in the first term, and Part B runs in the second term; these are explained below:

Part A: Microprocessor-based parallel computing and theory with abstract study of special-purpose CPU/processor/SoC design. Three practicals related to parallel
computing and the ‘conceptual assignment’ mini-project concerning partial design and theoretical analysis of a special-purpose HPEC design concept.

Part B: Reconfigurable computing and advanced theories of distributed and heterogeneous computing ecologies (including Apache Hadoop). FPGA up-skilling,
and the design and development of digital logic to implement a digital accelerator (or special purpose digital SoC systems) running on FPGA platforms (these
digital accelerators could also be considered to prototype functionality aspects of digital SoC system, albeit at a much larger scale, and slower performance, that
what can be achieved on a silicon wafer). Considering the increasingly many solutions for HPEC development, as well as the increasing class size, this second
term of the course has been adjusted to be less HDL- and FPGA-dominated and to rather provide students more variation in tools they choose to use; however
a clear consistency is maintained in terms of the developing of an application accelerator as part of a component of a HPEC system, but instead of requiring all
students to develop a FPGA-based accelerator, students will be given alternates such as using a GPU instead of a FPGA. All students will nevertheless learn Verilog
HDL coding, building on the basic HDL introduction in Embedded Systems II (EEE3096S), to implement and test more complex HDL solutions.

We have been trying to move this course away from a lecture-dominated (transmission) approach, towards a more “expeditionary learning”, where the students
are provided a curated collection of learning resources, instructional guidelines on assimilating and learning from these resources, tasked with practical
assignments and problem-solving tasks to gain experience in using tools for solving representative problems and building design understanding in this subject.
The course has accordingly been divided into a series of topics, a new topic generally starting each week, for which the associated resources will be released,
guidelines for learning from those resources will be provided, and opportunities for posing questions, or discussing solutions will be provided. Quizzes will be
held to encourage students to keep up with the learning topics and to help them to assess their performance in the course. While the quizzes will generally be
for marks (to encourage participation), these quizzes will have only a small weighing in the final grade.

During the first term (Part A) students focus on fundamentals of parallel computing architectures and parallel programming. During this term students focus on
laboratory pracs and GA2/homework tasks (reading and possible short assignment/comprehension task). Into the third week of Term 1, the GA2 Conceptual
Assignment and its associated reading task will be released. This conceptual exercise, as the name suggests, is largely a thinking exercise and high-level design
conceptualization; the student’s understanding of this is assessed in the first GA2 Test.

During the second term (Part B) the course has an emphasis on the use of field programmable gate arrays (FPGAs) and HDL programming in relation to design
and application development for ReConfigurable (RC) hardware platforms. RC platforms, and representative case studies, are discussed in the learning resources,
and in the pracs, prepared as platforms that provide a means to accelerate computation, or to offload computation from a host CPU. Students’ understanding
of HDL coding, hardware/software peripheral interfacing and other more embedded software related development issues are built up, to develop an
understanding of using HDL to design a hardware accelerator component or specialized peripheral, that can assist the PC/host computer in the completion of
tasks. These theories lead into the course project, which is called the ‘Your Own Digital Accelerator’ (YODA) Project, and is worked on by a team of two or three
students. This purpose of the YODA project is to integrate the student’s understanding and experiences of HPES learned in this course to build and test the YODA
device, which is a prototyped system that incorporates an accelerator component (e.g., running on a FPGA platform or a GPU) that connects with a host-based
program (note, this can be designed around use as a hardware-in-the-loop type approach where a real accelerator is used, OR it can be designed to run in a
simulation environment, such as running more in ‘slow time’ on an accurate simulator as opposed to running in real-time). Besides HDL and other software
development and simulation, the project touches on issues of problem description, problem solving, design and implementation, hardware/software interfacing,
communications protocol design, experimentation and culminates in a final acceptance testing demonstration.

Outline of course structure
The course structure is shown on the next page. While it is generally somewhat consistent between versions of this course, the specific topics covered may
change a bit each year.

Assessment Strategy for Distance Version

The assessment strategy followed in the distance version of this course is going to have some similarities to that of the on-campus version. In particular, we are
aiming to have the following assessments:

Assignment Weighting Details

Practicals 15% 3 practicals, bridges to FPGA or OpenCL project-based learning PbL activities)

Tests 18% 4%: spot quizzes / participation marks for activities during lecture slot;
7% : Test 1 including GA2 validation test
7% : Test 2 (preparation for final exam)

GA assessment 2% Comprehension Test. Conceptual assignment. These & validation test are DP requirement for EEE4120F.

Project 15% Involves milestones: status update, demo, final report

Final exam 50% Planned to be a venue-based closed-book examination

In addition to the above, we will provide learning activities to help encourage participation, and assist in self-learning of lecture topics and test preparation.
Students are all encouraged to participate in spot quizzes and activities that make take place during lecture slots, and make use of Discord to ask questions of
tutors / ‘project managers’.

https://hadoop.apache.org/

 5

 Outline of course structure

Term 1:
1. Intro to HPES and Reconfigurable Computing (13-17 Feb)
- Welcome lecture and explanation of the course
- Terminology (e.g. Golden Measure; Spatial vs. Temporal computing)
- Reading: R01 ‘Landscale of Parallel Computing Research’
- Prac1: Testing methods: OCTAVE intro and creating golden measure
2. Edge, Tools to Used, Intro Benchmarking (20-24 Feb)
- Considerations for EDGE computing & relevance of HPES to this
- Microprocessor-based vs. FPGA-based solutions for RC
- Platform & tools we will use
- GPUs (issues and benefits) and programming of these *
- OpenCL and application to many-core / GPUs programming
- Quiz 1 (Thursday 2pm, 15min)
- Performance benchmarking essentials: wall clock time
- Useful Techniques Selected topics on timing in C or other languages.
- Prac2: GPUs OpenCL experience, sequential vs many-core parallel
- Due: Prac 1
3. Parallel programming & Performance Benchmarks (27 Feb – 3 Mar)
- Performance benchmarking; Size, Weight and Power benchmarking
- Profiling code (Reading: Valgrind)
- Parallel computing fundamentals
- Large Scale Parallelism
- Important terms (contiguous, partitioned, interleaved, interlaced)
- Amdahl’s Law for the Multicore Era
- Base Core Equivalents (BCE).
- Reading: Hill & Marty’s “Amdahl Law in Multicore Era.pdf”
4. Design of Parallel Systems and Programs (6-10 Mar)
- Out: scientific GA2 reading
- Steps in Designing Parallel Computing (steps 2 and 3 of 3…)
- Partitioning, Decomposition & Granularity, Communications
- Parallel computing essential theories
 - Identify data dependencies
 - Synchronization
 - Load balancing, performance analysis & tuning
 - Parallel prog models: Data parallel; msg passing; shared mem; hybrid
- Quiz2 : assessing Hill & Marty’s “Amdahl Law in Multicore Era.pdf”
- Automatic parallelism;
5. Communication and memory architecture (13-17 Mar)
- Cost of communication (Design of parallel systems – step 2 of 3)
- Latency, bandwidth, effective bandwidth (and related calculations)
- Blocking/non-blocking; synch/asynch; scope of communications
- Memory access architectures (intro to this, more in Weeks 10, 11)
- GA2 Comprehension Check (attempt 1, 16 Mar 2pm venue: EM6)
6. Verilog Recap & Vivado Intro (recap of EEE3096S) (20-24 Mar)
- YODA project begins!
- Presentation of the YODA (Your Own Digital Accelerator) project
- Whirlwind tour of some YODA topics
- Call for proposals for innovative YODA projects
- Prac3: Simulation-based IP Core Integration Using Xilinx Vivado
 (prac does not need FPGA kit, just uses simulator)
- Recap programmable logics, Verilog HDL and VHDL
- The lecture delves into syntax and simple examples of using Verilog
- The open-source Icarus Verilog simulator and Xilinx QSim is used.
- Leading on to FPGA application coding.
- Using IP cores / block design / adding IP in Vivado designs
- Advantages of knowing both VHDL and Verilog
- Prac4 (optional) reflections on its relevance to these topics
- Due: Prac 2 (27 March 2023)
- Due: YODA MS-0: Group formed (choose topic by 31 Mar)

Term 2:
7. Test 1, catchup and YODA project planning (3-7 Apr)
- Class Test 1 Including attempt 2 for GA2 comprehension check
- Due: Prac 3 (7 April 2023)
8. More Verilog HDL and Simulation Techniques (10-14 Apr)
 (GA additional attempt) – 13 Apr 3pm
- Due: YODA Proposal Blog (12 Apr)
- Various HDL techniques (synch vs asynch, pitfalls, sequential modules)
- State-machines in Verilog
- Overview of the variety of FPGAs and tools.
- The Nexys FPGA platform (example embedded Xilinx FPGA platform)
- Licensing of tools & IP
- Practical methods: ChipScope and brief overview of other tools
- HDL Imitation Method. Relevance Amdahl’s to FPGA (see also BCE).
- Simulation methods for brining in real-time and physical characteristics
9. FPGA systems and related architecture (17-21 Apr)
- Due: YODA Status Update (this week by 21 Apr)
- FPGA Performance benchmarking techniques
- Memory Control Units (part2/2), FIFOs and LIFOs in Verilog
- Some useful operators. Doing math, developing a multiplier.
- Workings of a PLL
- Theoretical speed calculation of a logic design.
- Comparing FPGA-based execution time to CPU execution time.
10. Config architecture, Interconnects, Memory (24-28 Apr)
- Configuration HW architectures (where is the bitstream stored etc)
- Robust interfaces and handshaking
- Designs concerns, the ‘design space’ & various (real-world) vignettes
 (changes somewhat each year)
- Interconnection on-chip bus topologies (extends ‘handshaking’)
- Memory types, Memory Control Units (part1/2), MCU in Verilog
- Due: YODA Draft Paper (by 28 Apr)
11. YODA Conference & Demos Week (1-5 May)
- Data Path, Instructure Path
- Cache Hierarchy
- Shared/Not Memory
- Instruction Set Arch, micro instructions
- Processor aspects - e.g. CISC vs RISC (Reading: RISC-V scenarios)
- aim to end main content lectures 5 May
12. Foundational Computer Architecture (8-12 May)
- YODA Conference
- Due: YODA MS-4 / conf. presentation by 12 May
13. More HDL methods; RC Design Process (15-19 May)
- Due: YODA MS-5: Final Project Report & Code
- additional/advanced lecture topics:
- Dealing with clock boundaries
- Latest Trends in FPGAs.
- Benchmarking using DMIPS, Dhrystone, Whetstone, Coremark
- Virtualization and other key technology factors
 19 May: last teaching day of term
- optional
 - FPGA External Mem. Direct Memory Access (DMA) principles
 - On-chip Interfacing Standards (Wishbone, AVALON)
OPTIONAL:
14. Softcores & RC Design Process
- The FPGA Design Cycle
- Recap of design cycle and HW/SW co-design
- Quality assessment and measurement {towards HDL Kaizen}
- optional: YODA MS-3: Draft paper
- optional in 2021:
 - Methods for RC application development
 - Softcore & uCLinux O/S running on an FPGA platform
 - C→HDL automatic conversion (HandleC notation, how to write
 a C-style representation of a digital logic circuit).
 - Use of lookup tables, megablocks etc. (bulky and boring section
 for most students, will probably be left out)
 - Sourcing Intellectual Properties - optional

 6

Test/Project Dates

Quizzes and Worksheets

These will be announced a week before they are released (removed for 2022). Worksheets instead moved to GA2 assessment.

GA2 Comprehension Test (11 Mar, online)
Class Test 1 including GA2 Validation Test (5 April, 1.5h, regular double lecture time 2pm in venue EM6)

Final Exam TBD - waiting to receiving exam timetable

Project (note: can choose to submit milestones early if you choose, when relevant assignment opens. Late penalties: see rule below.)

Milestone 0: Group formed and topic Selection [0%] 23 Mar

Milestone 1: Proposal Blog [5%] 12 Apr

Milestone 2: Status Update [5%] sometime in week 17-21 Apr

Milestone 3: Draft paper [5%] 28 Apr (note this submission is not optional this year, is for marks)

Milestone 4: Demonstration / (Alpha type) Acceptance Test [20%] 8-12 May (conference presentation, all team members to present)

Milestone 5: Final Project Report [65%] (Code Hand in optional) 15 May (submit by 23h55)
* The final double period or two was previously set aside for the “YODA Conference” where each team is given (about 10min) to do a brief presentation on
their project topic (counts as YODA presentation marks). This was restructured as Video Recordings that each YODA team prepared and upload to Vula by the
due date (to be announced). Each student should look at two or more demo videos submitted by other students (who are not in the same YODA team). I’m
considering making it more of a Vlog, where students can possibly use the Vula Blog add some comments other materials together with a link to their video,
possibly also posting a follow-up short vlog to answer any questions that the markers may have.

Knowledge areas

Maths Sciences Natural Sciences Eng Sciences Design & Synthesis Complm Studies

0 0 50 50 0

Learning environment

Multi-modal, online learning supported. Students will be expected to engage with material in various forms in a variety of different ways.

Suggested time allocation

Learning Activity
No./ week Time in hours Contact time Multiplier Total no of

hours

Number of lectures per week 3 0.75 2 54

Number of tutorials per week --- --- --- ---

Total practical/lab periods 3 pracs 3.3 3 30

Total other contact periods --- 8 --- 8

Total assignment non-contact hours (Project) --- 40 --- 40

Assessment hours (Quizzes/Worksheets; Exam) --- 7 4 28

Number of weeks the course lasts 12 --- --- ---

Total hours --- --- --- 160

General assessment strategy

Assessment Task % The following DP rules and late penalty rules apply:

Labs 15 The following DP rules apply:

1. Minimum 40% overall class average to write the final exam.
2. Engineering students required to pass ECSA GA/ELO 2

Late penalty for assignments: 10% a day, up to a max of -50% (no >5 days late)

Project 15

Tests (quizzes [8%] and
class test [10%]) 18

GA2 Conceptual Asg. 2

Exam 50

Total 100

Books/Reading Materials/Notes

• A selection of prescribed academic articles (journal papers and peer reviewed conference papers) will augment the text-book (these
papers or links to them will be made available on VULA or linked to on the open courseware website)

• Public / OpenUCT website: http://ocw.ee.uct.ac.za/courses/EEE4120F

Absence: The continuous assessment marks will be adjusted to allow for absence only on the following grounds:

• A medical certificate for absence of a class test or exam

• Death of an immediate family member (parent or sibling)

• Pre-arranged absence to represent a University, provincial or national team.

Academic dishonesty: Plagiarism is a very serious offence and usually leads to disciplinary action that could include expulsion from the university.
Therefore, recognise the work of others in any submission. Details of referencing methods are widely available on the Web. A non-plagiarism
declaration must be submitted with all work submitted for marking.

http://ocw.ee.uct.ac.za/courses/EEE4120F

