
UNIVERSITY OF CAPE TOWN

EEE4120F - High Performance Digital Embedded Systems

Class Test 1 [Syllabus: Lectures 1 - 8] - Sample Solutions

20th March 2019

Instructions:

� Time: 90 mins

� Marks: 66

� Answer each question on separate pages

� Make sure your student number is on all your answer pages

� There are 4 questions, each divided into sub-questions. Answer all sub-questions.

QUESTION ONE [15 MARKS]

1. Consider the �distributed embedded smart camera� system by Michael Bramberger et al that
we discussed in the lectures. Discuss brie�y why this system can be considered an example of
a high performance digital embedded computing system. [3]

Ans:

-parallel computing hardware: hardware architecture is based on a multiprocessor con�guration
comprising of up to 10 digital signal processors with aggregate performance of to 80GIPS

-real-time processing: designed for real-time processing e.g real-time video analyses and com-
pression

-SWaP constraints: designed to meet strict size, weight and power consumption constraints

2. During the lectures, we reiterated the "brick wall" as one of the main design challenges that
forced the computing industry to seriously consider parallel computing as a key strategy for
achieving high performance in applications. Brie�y describe what you understand this �brick
wall� to be. [3]

Ans:

-Brick wall = power wall + memory wall + instruction-level parallelism wall

-power wall: inability to stack more transistors into one die to produce processors with higher
clock cycles due to increase in dynamic power dissipation (i.e Pα 1

2 .C.V.F
2)

-memory wall: lower memory access rates on uni-processor architectures create a performance
bottleneck

-instruction-level parallelism wall: limit in ability to extract more instruction-level concurrency
from sequential applications

1

3. Filtering is one of the most fundamental and commonly used operation in digital systems. In
particular, the �nite impulse response (FIR) �lter is a popular example. Given a set of N real
�lter coe�cients, h = {h0, h1, ..., hN−1}, which speci�es the desired behavior of the �lter, and
real input speech samples bu�er of size Z > N , x = {x0, x1, ..., xZ−1}, the �lter calculates
each �ltered output sample y(t) at time t = {t0, t1, ..., tT }, by performing a sum of products
according to the following formula:

y(n) =

N−1∑
k=0

h(k) ∗ x(n− k).

Derive the computational complexity of the sequential FIR �lter algorithm. [7]

Ans:

-Computational complexity refers to the amount of processing (in terms of operations) required
by the algorithm

-For each y(n): N real multiplications + N-1 real additions -> 2N-1 real operations (see formula)

-For all y(n) output samples: given Z input samples -> Z ouput samples -> Z*(2N-1) real
operations

-Therefore, if Z>N, which should be the case in practice -> using Big-Oh notation, FIR is of
algorithm complexity > O(N2)

4. Assume that you have Y cores on a multi-core processor to run an optimally multi-threaded
version of the FIR �lter, express the expected speedup factor. [2]

Ans:

-Maximum achievable speedup S, for any algorithm with a parallelisable fraction p that can be
accelerated with a factor s, is provided by Amdahl's law:S = 1

(1−p)+ p
s

-For the FIR, it is possible to achieve a parallel fraction of p=1 by partitioning the input
samples X evenly across the parallel processors

-However, due to communication overhead, the achievable speedup s will not equal the number
of parallel processors i.e s<Y

-Therefore: S = 1
(1−p)+ p

s
=S = 1

(1−1)+ 1
s

= s < Y

QUESTION TWO [23 MARKS]

You will recall that, in the lectures, we considered the technologies behind autonomous cars as one
example of practical applications of high performance digital embedded computing systems. The
�gure below provides a functional view of the �ow of data in a typical sensing and control system for
an autonomous vehicle. Note that each of the various sensors has a dedicated processing stage that
pre-processes raw sensor data and prepares it for usage in creating a real-time object representation
that can be used by the next processing stages.

The system uses the outputs of all the sensors to generate a 3D map of the environment
surrounding the vehicle. The map shows, among several things, pedestrains, tra�c lights, curbs and
lane markers, vehicles, the car's location in a larger map of the area and other items that must be

2

noticed for safe driving. The �action engine� uses this information to determine what action the car
should take and communicates activatioin signals to the processors that control the car's
mechanical operations and noti�cations to the driver. Other inputs come from sensors within the
car that monitor the state of the driver, in case there is a need for an emergency override of the rest
of the system.

1. Select and use an appropriate UML behavioural diagram, between use-case, state, sequence
and activity diagrams, to describe the behavior of the action engine module [5]

Ans.

-selection of suitable modeling diagram and rationale (1): any of the three diagrams are suitable,
given the little amount of information given about the functionality of the action engine. So,
any well motivated diagram type is �ne.

-model sketch (4): marks awarded in terms of clarity, use of given information about the action
engine module (e.g action tasks as shown on the functional diagram include warn, complement,
and control(e.g braking etc)) and creativity (ability to think of other relevant detail not included
in the question)

2. Compare and contrast the computational characteristics of the sense, understand and act func-
tional modules of the system in terms of computational complexity, throughput and latency
requirements [6]

3

sense understand act

computational
complexity:

-relatively simple
algorithms
-largely
data-indepedent
operations
-e.g �ltering

-relatively complex
algorithms
-high
data-dependent
operations
-e.g deep learning
feature extraction
algorithms

-medium to low
-medium
data-dependent
operations
-e.g emergency
braking action

throughput:

-very high
throughputs
-e.g very high
speed and high
resolution cameras
and GPS for
real-time sensing of
the environment

-high throughputs
-very high sensory
input throughputs
reduced as data
travels down the
front-end
pre-processing
stages

-moderate
throughputs

latency:
-short (for RT
monitoring)

-medium (for RT
monitoring)

-relatively longer
(for RT control)

3. Multicore GPPs, DSPs, GPUs and FPGAs are the main programmable hardware solutions used
to implement applications with high processing requirements. Propose and describe a speci�c
processing hardware architecture you would use to implement the computational functions
of the autonomous vehicle system shown in the �gure above. You should explain the level of
parallelism possible for, and what programmable hardware will be used to implement the sensor
processing, sensor fusion and action engine functions of the system. Include brief justi�cations
for your architectural decisions. Use explanations and a well labelled block diagram (or UML
deployment diagram) to describe your proposed architecture. [12]

Ans.

-brief characterisation of the various system functional blocks (FE sensor processing, BE sensor
fusion, BE action engine) in terms of possible parallelism (3 marks)

-a sketchy block diagram showing main functional blocks and the proposed types of processing
platforms (3 marks)

-diagram should be accompanied by a brief rationale for the choices of appropriate processing
platforms for each functional stage (6 marks)

-block diagram should also show also example interconnection technology to be used to interface
the various processing modules (i.e for a heterogeneous processing architecture)

4

sense understand act

parallelism:

-mainly
data-parallel
-task-parallelism
across multiple
sensor
pre-processing
stages
-e.g kernels include
�ltering for sensor
input conditioning

-mix of data and
task-parallelism
-e.g on-going AI model
training operations

-mix of data and task
parallelism
-but mainly
task-parallelism
-e.g sending out multiple
control signals to multiple
MCUs and they in turn
performing di�erent
actions concurrently to
implement a particular
main action

processing
hardware:

-FPGAs or ASICs
-(FPGAs) best for
high throughput
parallel data
streams processing
-both capable of
very high
processing
throughputs

-any combination of the
microprocessor platforms
-DSPs, GPPs, GPUs
-They o�er good support
for control-oriented
(multicore GPPs), high
precision calculations
(DSPs) operations and
also good support for
data-parallelism (GPUs)

-mixture of FPGAs for
glue logic
-MCUs for interfacing
with and control of
mechanical components

QUESTION THREE [19 MARKS]

In mathematics, the Sieve of Eratosthenes is a simple, ancient algorithm for �nding all prime numbers
up to any given limit. Consider the pseudocode of the algorithm given below.'

&

$

%

Input : an i n t e g e r n > 1 .
Let A be an array o f Boolean values , indexed by
i n t e g e r s 2 to n , i n i t i a l l y a l l s e t to t rue .
f o r i = 2 , 3 , 4 , . . . , not exceed ing n :

i f A[i] i s t rue :
f o r j = i ^2 , i^2+i , i ^2+2i , i ^2+3i , . . . , not exceed ing n :
A[j] := f a l s e .

Output : a l l i such that A[i] i s t rue .

1. Write an Octave function that implements the functionality of the Sieve of Eratosthenes [7]

2. Explain how you would develop a multi-threaded implementation of the Sieve of Eratosthenese
algorithm. You need to explain and motivate what partitioning strategy you would use so as
to divide the work e�ciently across the threads, how you would get the input integer n to the
threads, and how you would implement the necessary thread kernel(s) (NB: you can just write
C code or you can explain in English and use diagrams to illustrate) [12]

Ans:

5

-passing info to threads (2)

-partitioning strategy (3)

-synchronisation (2)

-kernel implementation (5)

'

&

$

%

s t r u c t thread_data{
i n t thread_id , start_index , stop_index ;

} ;
. . .
void *SieveOfEratosthenes_Thread (void * threadarg) {

s t r u c t thread_data *my_data ;
my_data=(s t r u c t thread_data *) threadarg ;
i n t t i d=my_data−>thread_id ,
t_s t a r t i=my_data−>start_index ,
t_stopi=my_data−>stop_index ;
f o r (i n t p=t_s t a r t i ; p<=t_stopi ; p++) {

// I f prime [p] i s not changed , then i t i s a prime
i f (prime [p]==true) {
// Update a l l mu l t i p l e s o f p

f o r (i n t j=p*p ; j<=n ; j += p)
prime [j] = f a l s e ;

}
}

}

QUESTION FOUR [9 MARKS]

1. The Core i5 Ivy Bridge, released in 2012, had a clock rate of 3.4 GHz and voltage of 0.9 V.
Assume that, on average, it consumed 30 W of static power and 40 W of dynamic power. Find
the average capacitive load for the Core i5 processor. [4]

Ans:

-DynamicPower = 1
2 � C � V 2 � F

-40 = 1
2xCx0.9

2x3.4x109

-C=0.029pF

2. Implementations of �oating-point (FP) square root vary signi�cantly in performance. Suppose
FP square root (FPSQR) is responsible for 20% of the execution time of a critical benchmark
on a multiprocessor. One proposal is to add a custom FPSQR chip that will speed up this
operation by a factor of 8. The other alternative is just to try to make all FP instructions run
faster by improving the underlying architecture of the multiprocessor so that it has a lower
CPI; FP instructions are responsible for a total of 50% of the total execution time. The design
team believes that they can halve the CPI of the machine and also make all FP instructions
run three times faster with the same e�ort as required for the fast square root.

6

Compare the two design alternatives [5]

Ans:

-We compare the two design alternative in terms of their achievable speedup factors

-Speedupwith−FPSQR−HW = 1
(1−p)+ p

s
= 1

(1−20%)+ 20%
8

= 1.21

-Speedupwith−Optimised−FP−Ops =
1

(1−p)+ p
s
= 1

(1−50%)+ 50%
3

= 1.5

-Therefore, optimisation of the FP instructions will yield better performance than inclusion of
a custom FPSQR chip in terms of response time

7

CHEAT SHEET

Parallel performance

Amdahl's law:

S =
1

(1− p) + p
s

(1)

BCE-based Speedup on symmetric multicore:

Speedupsymmetric =
1

1−f
perf(r) +

f.r
perf(r).n

(2)

BCE-based Speedup on dynamic multicore:

Speedupdynamic =
1

1−f
perf(r) +

f
n

(3)

The classic CPU performance equation:

CPUclockcycles =

n∑
i=1

CPIi � ICi (4)

CPUtime = (

n∑
i=1

CPIi � ICi) � ClockCycletime (5)

CPI =

∑n
i=1 CPIi � ICi

Instructioncount
(6)

Processor Dynamic power:

DynamicPower =
1

2
� C � V 2 � F (7)

Pthreads

int pthread_create(pthread_t *tid, const pthread_attr_t *attr, void *(*start_routine)(void*),
void *arg);

// attr can be set to NULL for default attributes

void pthread_join(pthread_t thread_id, void **value_ptr);

void pthread_exit(void *value);

int pthread_kill(pthread_t thread_id, int sig);

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

It is the work of true education to train the youth to be thinkers, and not mere re�ectors of other men's thought -

Education, p17.

8

