
 EEE4120F Quiz 3

 Lecture 14 - 17 and Verilog Essentials DATE: 20/4/2023

Name: _______________ Student Number: _________________ Please fill in name!
 This is a fairly short quiz, but it is for marks!

NB: Please select only one answer option for each multiple choice question

CIRCLE/COLOR-IN ANSWERS FOR MULTIPLE CHIOCE QUESTIONS

TOTAL NUMBER OF QUESTIONS : FIVE (5) TIME (mins): 15

Question - EACH QUESTION WORTH 1 MARK Sec W % X

Q1 A PLA and a CPLA is not exactly the same thing. It was very briefly indicated

what a CPLA or 'midrange' type of programmable logic item is … which one of

these most accurately describes what a CPLA is

80 2 10%

 [1] A CPLA is the same a a FPGA, programmed and structured the same.

 [2] A CPLA actually a PLA, also just an array of the same gate types but the

way it is programmed is a bit different.

 [3] A CPLA is a more advanced technology than an FPGA.

 [4] A CPLA is more sophisticated than a PLA as it is an interconnected set of

PLAs in which these interconencts can be configured.

 [5] The difference is essetnially just in speed, the CPLA is much faster.

Q2 I discuss PLBs and PLEs quite a bit. But how are these two things related?

Select the best answer below.

80 3 15%

 [1] A PLE manages (via configuration MUXes) one or more PLBs.

 [2] A PLE is a more advanced circuit element than a PLB.

 [3] Both a PLE and a PLB are equivelent in logic, but the PLB is faster.

 [4] One of more PLEs, together with configuration MUXes, would be

contained within a PLB.

 [5] The main thing is that you should always have the same number of PLBs

as PLEs for a logic design to be executable on an FPGA.

CODE TO VIEW FOR Q3-Q5 : Here's a simple Verilog code module. Take a

look over that and answer the questions that follow. Edit the code below

directly to respond to Q3

Q3
// Simple Verilog code module. Rather lack of comments.

320 5 25%

module test (input clk, rst, output [3:0] xout);

 reg [3:0] x;

 // do work only when positive clk or rst

 always @(posedge clk or posedge rst)

 begin

 if(rst) x <= 4'hf

 else

 x <= x - 4'd1;

 end

 assign xout = x;

endmodule

Q3 Todo for Q3: look over the code on the previous page. Briefly explain in

English what functionaliy this module is implementing. (5 marks)

 __

 __

Q4 You'd probably agree that Verilog code is poorly commented. Not to mention

lazy naming of a potentially important ports. Go ahead and add improved

comments. And by there way, there might be a syntax or typo in that code - bit

of find Wally style, see if you spot it and fix it (comment in the line below if

you'd like to mention the error or assure that there is no error).

210 5 25%

comment re error:

Q5 Another thing to do regards that test module (I'm sure chuffed with myself for

giving the module a meanigful name albit withotu describing its function). But

now you need to inspect some more code. Below is a test bench for the test

module. Write down in the space indicated what the first three lines generated

from the $monitor operation would display (you don't need to get it perfectly

right, a suitably close answer would get full makes).

210 5 25%

Show what (at least) the first three lines displayed to the log by $monitor will

look like (if you want to be fancy you can go beyond 3 lines but it won't

necessarily get you any bonus marks):

TOTAL : 900 20 100%

Time : time est. in sec W : Weighting of question % : How much question counts X : Office use

// testbench for mystry module#1

module test_testbench();

 reg clk, rst;

 wire [3:0] xout;

 // device (besides the student) under test ...

 test dut(clk, rst, xout);

 initial begin

 rst=1; clk=0;

 $monitor("clk=%b rst=%b xout=%d",clk,rst,xout);

 #10;

 rst=0;

 repeat (10)

 #5 clk = !clk;

 end

endmodule

