MEMORY INTEGRAL SUMMER CORE (MISC)

The MISC is a specialized processing cores who's sole purpose is to add up number in memory. The core is available in two flavours: the ultra cheap MISC1 (or processor taking 1-BCE worth of resources) and the non-so-cheap MISC2 that takes 4-BCE of resources. The instruction sets (that we are interested in) are listed below.

MISC1 / 1-BCE Instructions		MISC2 / 4-BCE Instructions	
ADD A, X	; Add regsiter X to accululator A	ADD Z,X,Y	; Add regs X and Y and save to register Z
SET A, value	; Set reg A to a 32-bit constant value	SET X, value	; Set reg X to a 32-bit constant value
LD $\mathrm{A},[\mathrm{X}]$; Load word from mem address addr into A	LD $\mathrm{X}, \mathrm{Y} \mathrm{Y}$; Load word from mem addr Y into X
MV X, Y	; Move value from register Y into X	LD $\mathrm{X},[\mathrm{Y}+=4]$; Load word from mem addr Y into X and
SWP A, X	; Swap value of accumulator with reg X		increment Y by 4 to next address.
CLR X	; Set register X to 0	MV X, Y	; Move value from regsister Y into regsiter X
J addr	; Jump to address	SWP X,Y	; Swap value of register Y with X
		CLR X,Y	; Set regs X and Y to 0 (X \& Y can be same)
		J addr	; jump to address

The MISC2 is able to execute each of its instructions at $2 x$ the speed that MISC1 is able to (i.e. while MISC1 is design around a maximum clock of $\mathbf{8 0 0 M H z}$, whereas the MSC2 supports $\mathbf{1 6 0 0 M H z}$).

A typical program that is run on these processors is to sum up important parts of memory to do checksums. A typical program would be:

Note: assume that you want the sum to be stored in register B.

