EEE4120F Quiz 2 based on paper: "Amdahl Law in Multicore Era" by Hill and Marty

...

Name: ____

Student Number:

DATE: 5/3/2020

Fill in name!

This is just a very short quiz, but it is for marks!

NB: Please select only one answer option for each question

CIRCLE/COLOR-IN ANSWERS FOR MULTIPLE CHIOCE QUESTIONS

TIME (mins): 20

TOTAL NUMBER OF QUESTIONS : FIVE (5)

#	Question - EACH QUESTION WORTH 1 MARK	Mark	Mins	
Q1		1	1	Х
	 Hill and Marty discuss Amdahl's classic law, which is typically taught in a university curriculum, expresses speedup as (choose the right option:) [1] Let speedup be the difference between the original execution time and the enhanced execution time. [2] Let speedup be the original execution time divided by the enhanced execution time. [3] Let speedup be the enhanced execution time divided by the original execution time. [4] Let speedup be 1 over the original execution time minus the enhanced execution time. [5] Let speedup be 1 over the sum of: the original execution time divided by the enhanced by the enhanced execution time. (<i>terminology note:</i> consider the "original execution time" to be the same as the "sequential" or "non-enhanced execution time.) 			(marking column)
Q2	Here's an easy gift for you Explain the term BCE in relation to this paper:	1	0.5	Х
Info for Q3 - Q5	 [1] BCE = Base Core Equivalent <== [2] BCE = Basic Core Equivalent [3] BCE = Basic Component Entity [4] BCE = Baseline Core Element [5] BCE = Base Compute and Element The authors use the term "more powerful core" or "larger core" to refer to an enhanced core that may take multiple BCEs in terms of resources; I like to use the term "megacore" because that's more commonly used at least in relation to Xilinx IP. So a BCE and a megacore doesn't necessarily mean they have to be CPUs that run a standard set of instructions. That leads is in the main question for this test Please see the attached handout with the 1-BCE vs 4-BCE processor descriptions and answer these questions 			
Q3	The summing procedure shown on the handout is the loop we want to run most of the time, i.e. the 7 instructions shown for the Loop in Table 1. Both implementations of Loop for the 1-BCE and the 4-BCE are equivalent comprising 7 instructions. Let's compare a multicore chip that has 4x 1-BCEs running Loop in parallel (with F set to a different start value for each thread) to a chip with just a single 1x 4-BCE. What is the speedup of the 4x 1-BCE running Loop in parallel over the 1x 4-BCE running one instance of Loop?	2	2	X
	[1] 1 [2] 1/2 [3] 1/4 [4] 2 <== [5] 4			

Asymmetric Speedup = $\frac{1}{\frac{1-F}{\text{perf}(R)} + \frac{F}{\text{perf}(R) + (n-R)}}$ R = 4, considering that a megacore consume 4x BCEs				
$\frac{1}{\operatorname{perf}(R)} + \frac{1}{\operatorname{perf}(R) + (n-R)}$				
IN = 4, COnsidering that a megacore consume 4X DOES				
If we consider the parallel portion is 80% and a chip that contains 6 BCE				
resources, what would be the asymmetric speedup were we to have 1x 4-BCE				
and 2x 1-BCEs all running the Loop in parallel?				
[1] between 1 and 2				
[2] between 2 and 3.				
[3] between 3 and 4. <==				
[4] between 4 and 5				
[5] more than 5				
Q5 This is an opportunity to demonstrate your assembly prowess and another	4	4	Х	
speedup calculation (the question is not worth so much but gives a chance to				
reach the stratospheric level of marks).				
Contemplate the MISC2 instruction set and the program in Table 1 of the				
handout. Propose a better optimized assembly implementation using a better				
choice of MISC2 instructions. Write your solution in the space below, and				
indicate what speedup of the Loop your implementation running on 1x 4-BCE would give in comparison to the original Loop running on 1x 1-BCE.				
(if using additional page, please put student number at the top of page!)				
Suggested implementation:				
CLR B ; clear the sum register				
SET A,#1000 ; set A to memory starting point				
Loop: LD C, $[A+=4]$; C = mem $[A]$; A = A + 4;				
LD D, $[A+=4]$; D = mem $[A]$; A = A + 4;				
ADD B, B, C ; $B = B + C$;				
ADD B, B, D ; $B = B + D;$				
J Loop ; repeat				
So the loop is taking 4 instructions, compared to 7 instructions that the MISC1				
core required. That is a speed up of 7/5 in terms of instructions. It is also				
doing 2 words in one loop so that is (7x2)/5. But also remember that the 4-				
BCE is $2x$ as fast as the 1-BCE so the speedup is then going to be:				
(7x2x2)/5 = 28/5 = 5.6				
So in other words by adjusting the programme to accommodate the more				
enhanced instructions, the 4-BCE achieves a speedup of 5.6!				
	10			
TOTAL :	Time : time est. in minutes, Mark : marks that question is worth X : for office use			