
 EEE4120F Quiz 2 based on paper:

 "Amdahl Law in Multicore Era" by Hill and Marty DATE: 5/3/2020

Name: _______________ Student Number: _________________ Fill in name!
 This is just a very short quiz, but it is for marks!

NB: Please select only one answer option for each question

CIRCLE/COLOR-IN ANSWERS FOR MULTIPLE CHIOCE QUESTIONS TIME (mins): 20

TOTAL NUMBER OF QUESTIONS : FIVE (5)

Question - EACH QUESTION WORTH 1 MARK Mark Mins

Q1 1 1 X

Hill and Marty discuss Amdahl's classic law, which is typically taught in a

university curriculum, expresses speedup as ... (choose the right option:)

 [1] Let speedup be the difference between the original execution time and

 the enhanced execution time.

 [2] Let speedup be the original execution time divided by the enhanced

 execution time. <==

 [3] Let speedup be the enhanced execution time divided by the original

 execution time.

 [4] Let speedup be 1 over the original execution time minus the enhanced

 execution time.

 [5] Let speedup be 1 over the sum of: the original execution time divided by

 the enhanced execution plus the enhanced execution time.

(terminology note: consider the "original execution time" to be the same as

the "sequential" or "non-enhanced execution time.)

 (

m
a

rk
in

g
 c

o
lu

m
n

)

Q2 Here's an easy gift for you…. Explain the term BCE in relation to this paper: 1 0.5 X

[1] BCE = Base Core Equivalent <==

[2] BCE = Basic Core Equivalent

[3] BCE = Basic Component Entity

[4] BCE = Baseline Core Element

[5] BCE = Base Compute and Element

In
fo

 f
o

r
Q

3
 -

 Q
5

The authors use the term "more powerful core" or "larger core" to refer to an

enhanced core that may take multiple BCEs in terms of resources; I like to

use the term "megacore" because that's more commonly used at least in

relation to Xilinx IP. So a BCE and a megacore doesn't necessarily mean they

have to be CPUs that run a standard set of instructions. That leads is in the

main question for this test....

Please see the attached handout with the 1-BCE vs 4-BCE processor

descriptions.... and answer these questions

Q3 The summing procedure shown on the handout is the loop we want to run

most of the time, i.e. the 7 instructions shown for the Loop in Table 1. Both

implementations of Loop for the 1-BCE and the 4-BCE are equivalent

comprising 7 instructions.

Let's compare a multicore chip that has 4x 1-BCEs running Loop in parallel

(with F set to a different start value for each thread) to a chip with just a single

1x 4-BCE. What is the speedup of the 4x 1-BCE running Loop in parallel over

the 1x 4-BCE running one instance of Loop?

2 2 X

[1] 1 [2] 1/2 [3] 1/4 [4] 2 <== [5] 4

 Please turn over ….

Q4 Asystemmatic speedup is defined as:

R = 4, considering that a megacore consume 4x BCEs

If we consider the parallel portion is 80% and a chip that contains 6 BCE

resources, what would be the asymmetric speedup were we to have 1x 4-BCE

and 2x 1-BCEs all running the Loop in parallel?

2 2 X

[1] between 1 and 2

[2] between 2 and 3.

[3] between 3 and 4. <==

[4] between 4 and 5

[5] more than 5

Q5 This is an opportunity to demonstrate your assembly prowess and another

speedup calculation (the question is not worth so much but gives a chance to

reach the stratospheric level of marks).

Contemplate the MISC2 instruction set and the program in Table 1 of the

handout. Propose a better optimized assembly implementation using a better

choice of MISC2 instructions. Write your solution in the space below, and

indicate what speedup of the Loop your implementation running on 1x 4-BCE

would give in comparison to the original Loop running on 1x 1-BCE.

(if using additional page, please put student number at the top of page!)

4 4 X

Suggested implementation:

 CLR B ; clear the sum register

 SET A,#1000 ; set A to memory starting point

Loop: LD C,[A+=4] ; C = mem[A]; A = A + 4;

 LD D,[A+=4] ; D = mem[A]; A = A + 4;

 ADD B,B,C ; B = B + C;

 ADD B,B,D ; B = B + D;

 J Loop ; repeat

So the loop is taking 4 instructions, compared to 7 instructions that the MISC1

core required. That is a speed up of 7/5 in terms of instructions. It is also

doing 2 words in one loop so that is (7x2)/5. But also rememeber that the 4-

BCE is 2x as fast as the 1-BCE so the speedup is then going to be:

 (7x2x2)/5 = 28/5 = 5.6

So in other words by adjusting the programme to accommodate the more

enhanced instructions, the 4-BCE achieves a speedup of 5.6!

TOTAL : 10

Time : time est. in minutes, Mark : marks that question is worth X : for office use

