EEE4120F Quiz 2 based on paper:
"Amdahl Law in Multicore Era" by Hill and Marty
DATE: 5/3/2020
Name: \qquad Student Number: Fill in name! This is just a very short quiz, but it is for marks!
NB: Please select only one answer option for each question
CIRCLE/COLOR-IN ANSWERS FOR MULTIPLE CHIOCE QUESTIONS
TIME (mins): 20
TOTAL NUMBER OF QUESTIONS : FIVE (5)

\#	Question - EACH QUESTION WORTH 1 MARK	Mark Mins		
Q1		1	1	X
	Hill and Marty discuss Amdahl's classic law, which is typically taught in a university curriculum, expresses speedup as ... (choose the right option:) [1] Let speedup be the difference between the original execution time and the enhanced execution time. [2] Let speedup be the original execution time divided by the enhanced execution time. [3] Let speedup be the enhanced execution time divided by the original execution time. [4] Let speedup be 1 over the original execution time minus the enhanced execution time. [5] Let speedup be 1 over the sum of: the original execution time divided by the enhanced execution plus the enhanced execution time. (terminology note: consider the "original execution time" to be the same as the "sequential" or "non-enhanced execution time.)			
Q2	Here's an easy gift for you.... Explain the term BCE in relation to this paper:	1	0.5	X
	[1] $\mathrm{BCE}=$ Base Core Equivalent <== [2] $\mathrm{BCE}=$ Basic Core Equivalent [3] BCE = Basic Component Entity [4] BCE = Baseline Core Element [5] $\mathrm{BCE}=$ Base Compute and Element			
$\begin{array}{\|l\|l} 10 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \end{array}$	The authors use the term "more powerful core" or "larger core" to refer to an enhanced core that may take multiple BCEs in terms of resources; I like to use the term "megacore" because that's more commonly used at least in relation to Xilinx IP. So a BCE and a megacore doesn't necessarily mean they have to be CPUs that run a standard set of instructions. That leads is in the main question for this test.... Please see the attached handout with the 1-BCE vs 4-BCE processor descriptions.... and answer these questions			
Q3	The summing procedure shown on the handout is the loop we want to run most of the time, i.e. the 7 instructions shown for the Loop in Table 1. Both implementations of Loop for the 1-BCE and the 4-BCE are equivalent comprising 7 instructions. Let's compare a multicore chip that has 4×1-BCEs running Loop in parallel (with F set to a different start value for each thread) to a chip with just a single 1×4-BCE. What is the speedup of the 4×1-BCE running Loop in parallel over the 1 x 4 -BCE running one instance of Loop?	2	2	X

Q4	Asystemmatic speedup is defined as: $\text { Asymmetric Speedup }=\frac{1}{\frac{1-F}{\operatorname{perf}(R)}+\frac{F}{\operatorname{perf}(R)+(n-R)}}$ $R=4$, considering that a megacore consume $4 x$ BCEs If we consider the parallel portion is 80% and a chip that contains 6 BCE resources, what would be the asymmetric speedup were we to have 1×4-BCE and 2×1-BCEs all running the Loop in parallel?	2	2	X
	[1] between 1 and 2 [2] between 2 and 3 . [3] between 3 and 4. <== [4] between 4 and 5 [5] more than 5			
Q5	This is an opportunity to demonstrate your assembly prowess and another speedup calculation (the question is not worth so much but gives a chance to reach the stratospheric level of marks). Contemplate the MISC2 instruction set and the program in Table 1 of the handout. Propose a better optimized assembly implementation using a better choice of MISC2 instructions. Write your solution in the space below, and indicate what speedup of the Loop your implementation running on 1x 4-BCE would give in comparison to the original Loop running on 1×1-BCE. (if using additional page, please put student number at the top of page!)	4	4	X
	Suggested implementation: So the loop is taking 4 instructions, compared to 7 instructions that the MISC1 core required. That is a speed up of $7 / 5$ in terms of instructions. It is also doing 2 words in one loop so that is $(7 \times 2) / 5$. But also rememeber that the 4 BCE is $2 x$ as fast as the 1 -BCE so the speedup is then going to be: $(7 \times 2 \times 2) / 5=28 / 5=5.6$ So in other words by adjusting the programme to accommodate the more enhanced instructions, the 4-BCE achieves a speedup of 5.6 !			
	TOTAL			

[^0]
[^0]: Time : time est. in minutes, Mark : marks that question is worth $\quad \mathrm{X}$: for office use

