

Digital Systems

EEE4084F

FINAL EXAM
15 June 2018

Out of 120 marks

SOLUTIONS!!!

Section 1: Short Answers [50 marks]

Q1. [12 marks]

(a) …Briefly explain the concept of bisectional bandwidth and why it is useful in judging the

network performance design of a high performance computer system (2011 exam 1.2)

Answer: The bisection bandwidth of a network is the bandwidth at which data may be

simultaneously communicated between the two halves of the network; the value is calculated as the

product of the bisection width (the number of links between the bisection) and the bandwidth of

each link. It is useful in establishing whether the interconnections between arbitrary processing

nodes, that may need to communicate, have an adequate bandwidth in the system. [5 marks]

(b) Calculate the bisection bandwidth for the network shown in Figure 1, assuming each link is

1Gbps…

Answer: This is a rectangular mesh structure; it is not a square with both size the same size so you

can’t simply use sqrt(P) with P=18 and getting a bandwidth of min 4Gbps. Rather, you need to

consider the two cuts: left/right P3,P9,P15 | P4,P10,P16 or up/down P7,P8… P12 | P13,P14…P18. As

you can see in the diagram if you divide left/right, the max bandwidth is 3 between the two 3x3

network sections. If you divide up/down then bandwidth is doubled to 6. Generally the worst case

scenario is applied, so it would be the former case of the left/right cut that has bisection bandwidth

of 3Gbps. [5 marks]

(c) i. What is the maximum speed P1 can continuously stream data to P18, assuming a 0us (i.e.

zero) time cost for each node…

Answer: This would simply be 1GBps, i.e. the links would be: [1 marks]

P1-P2-P3-P4-P5-P6-P12-P18 and P18-P17-P16-P15-P14-P13-P7-P1.

(c) ii.What is the maximum speed P1 can stream to P18 and P6 can simultaneously stream data

to P13…

Answer: This is also 1GBps. You might have thinking from (i) in terms of L-shapes going along the

perimeter (which would lead to 500MBps), but using some of the internal nodes you can easily see

that it is 1GBps due to the zero routing delay. [1 mark]

Q1.2. [12 marks]

Q1.2(a)

i. The main difference between a FPGA and a PLA is the: the architecture (how the system is

configured and programmed), the number of logic elements available, and the programming speed.

The FPGA has a more complex architecture, supports more complex designs, usually many types of

logic elements. [2]

ii. There is usually a particular programing sequence needed for an FPGA. In particular, if a FPGA

board needs to start up without being programmed from a host (e.g. attached PC), there needs to be

some way to program the FPGA. This is where a configuration architecture, utilizing a statemachine

implemented using a PLA or CPLD, is used in order to read the FPGA program from non-volatile

memory (e.g. a EEPROM chip) and to program the FPGA. Furthermore, the PLD/CPLD may also

include logic to support programming from a host, i.e. to receive a program sent from the host into a

then exercise the necessary programming pins on the FPGA in order to program it. [3]

Q1.2 (b)

Difficulties associated with taking an FPGA design forward to an ASCI design include accounting for

differences in propagation delays and operational speeds, different layouts of components; possibly

different implementations of components or CLBs that are utilized. Changes in the interconnections

and electrical properties of the material used for the ASIC. Futhermore, the tool chains may be quite

different and require the designer to undergo a lengthy learning curve to learn how to use the tools

effectively. There would also need to be more reliance on simulation, due to the expense of running

of physical instances of ASICs; whereas for FPGAs it is just a matter of programming the FPGA and

testing it on hardware, using a development kit prototyped board. Risks for ASIC include the

potential for having a re-do designs and the expense of additional runs to compensate for design

faults. Further there may be the risk of hiring consultants to assist with ASIC design and that it is

difficult to predict how long it will take to achieve a final operational ASIC due to the complexity of

this practice. [4]

Q1.2 (c) Advantages of parallel code are: potential for increased performance (by doing multiple

operations in parallel as opposed to being limited to sequential operation), the potential for

redundancy and fault tolerance (e.g. running the same operation on multiple different processors

which could be used to work around interference or damage that could cause processors to fail

temporarily or permanently). Improved responsiveness / decreased latency, the ability to respond to

interrupts more quickly, without necessarily relying on one available processor to handle the

request. [3]

Q1.3

1.3 (a)

Answer: Reasoning for identifying critical parts / ‘hotspots’: This involves determine where most of

the work needs to be done. Most scientific and technical programs accomplish the most substantial

portion of the work in only a few small places. So it is more effective to focus on parallelizing these

hotspots instead of overall improvement that would take more time – essentially ignoring parts of

the program that don’t need much CPU use and can be completed quick enough with just one

processor. [3 marks]

1.3 (b) Description of the spiral model and progression of development:

Answer: Major activities repeated:

 Analysis

 Design/implementation/prototyping

 Testing and planning for the next iteration

 Review

The spiral model tends to start small and ‘wind’ into an increasingly more complex and complete

product. The diagrams below illustrates suitable spiral model. (note on marking: a level of detail as

shown on the left is more expected in a student’s answer, i.e., an indication of where the 4 activities

above could be position would be sufficient – the more detailed diagram is just give as a reference

for marking). [5 marks]

1.3 (c) Description of the spiral model and progression of development:

Answer: fine grained [2 marks]

1.3 (d) Where dynamic work assignment would be applied rather than partitioning work as a

preprocess:

Answer: “Dynamic work assignment” is used for operations where the workload is unknown, or

cannot be effectively calculated, before starting the operation. [2 marks]

Q1.4

1.4 (a) A simple diagram is all that is needed to express the student’s understanding… e.g.:

1.4 (b) The student would be expected to write a simple main function that first reads in the

command line parameters. The solution look something like the following, annotations show

marking.

/* Program MIPP

 Machine learning Integer Prediction Program (MIPP)

 Given a group of integers this program tries to predict an output

*/

#include <mpi.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

/** Assume these functions are already defined: */

void learn (int x[3], int y) {} /* ML training alg */

void infer (int x[3], int *y) {} /* ML inference alg */

/** Define tags for the messages */

#define LEARN 1

#define INFER 2

int mean (int* x, int n)

{

 int sum = 0;

 for (int i=0; i<n; i++) sum+=x[i];

 return sum/n;

}

/** Main Function */

int main(int argc, char **argv) {

 int my_rank;

 int worldsize;

 int learning = 0;

 MPI_Init(&argc, &argv); /* Start MPI */

 /* Get Rank of this processor */

 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 /* Determined number of processors, needed for voting */

 MPI_Comm_size(MPI_COMM_WORLD, &worldsize);

 printf("Hi! I am processor ID %d of %d processes\n", my_rank, worldsize);

 /* Implement the psedocode as given in the question... */

 if (my_rank == 0) {

 /* This is the Master */

 if (argc<2) {

 printf("Not enough arguments\n");

 MPI_Abort(MPI_COMM_WORLD, 1);

 MPI_Finalize(); /* EXIT MPI */

 }

 if (strcmp(argv[1],"learn")==0) {

 int x[4];

 // y is x[4]! so that it all fits into one buffer

 learning = 1;

 printf("LEARNING MODE\n");

 if (argc < 5) {

 printf("No es posible :(Correct syntax: mipp x1 x2

x3 y)\n");

 MPI_Abort(MPI_COMM_WORLD, 1);

 MPI_Finalize(); /* EXIT MPI */

 }

 x[0] = atoi(argv[1]);

 x[1] = atoi(argv[2]);

 x[2] = atoi(argv[3]);

 x[3] = atoi(argv[4]);

 printf("TRAINING: %d %d %d -> %d\n", x[0], x[1], x[2],

x[3]);

 MPI_Bcast(x, sizeof(x), MPI_BYTE, 0, MPI_COMM_WORLD);

 printf(" master is done because there is no response

needed\n");

 } else {

 int x[3];

 if (strcmp(argv[1],"infer")!=0) {

 printf("No es posible :(Correct syntax: mipp x1 x2

x3 y)\n");

 MPI_Abort(MPI_COMM_WORLD, 1);

 MPI_Finalize(); /* EXIT MPI */

 }

 printf("INFER MODE\n");

 x[0] = atoi(argv[1]);

 x[1] = atoi(argv[2]);

 x[2] = atoi(argv[3]);

 printf("INFER: %d %d %d -> ?\n", x[0], x[1], x[2]);

 MPI_Bcast(x, sizeof(x), MPI_BYTE, 0, MPI_COMM_WORLD);

 printf(" master now needs to get back the predictions\n");

 int y[worldsize-1];

 MPI_Status status;

 for (int i=1; i<worldsize; i++) {

 MPI_Recv(&y[i-1],sizeof(y[i-

1]),MPI_CHAR,i,0,MPI_COMM_WORLD,&status);

 printf(" -- From %d got %d\n",i,y[i]);

 }

 /* now it should do voting or avaraging on what is the most

common answer */

 printf("DECISION: %d\n", mean(y,sizeof(y)/sizeof(int)));

 }

 } else {

 /* This is one of the Slaves */

 MPI_Status status;

 if (strcmp(argv[1],"learn")==0) {

 int x[4];

 printf(" SLAVE LEARNING!\n");

 // Note that with broadcast you don't use recv, all

nodes except root receives

 MPI_Bcast(x, sizeof(x), MPI_BYTE, 0,

MPI_COMM_WORLD);

 printf(" slave %d received: %d %d %d %d\n", my_rank, x[0],

x[1], x[2], x[3]);

 learn(x,x[3]);

 } else {

 int x[3];

 int y = my_rank;

 printf(" SLAVE INFERRING!\n");

 // Note that with broadcast you don't use recv, all

nodes except root receives

 MPI_Bcast(x, sizeof(x), MPI_BYTE, 0,

MPI_COMM_WORLD);

 printf(" slave %d received: %d %d %d\n", my_rank,

x[0], x[1], x[2]);

 infer(x,&y);

 MPI_Send(&y,sizeof(y),MPI_CHAR,0,0,MPI_COMM_WORLD);

 printf(" -+ From %d sent %d\n",my_rank,y);

 }

 }

 if (my_rank == 0) printf("All done :)\nHasta luego cocodrilo!\n");

 MPI_Finalize(); /* EXIT MPI */

}

SECTION 2 [each question worth 5 marks]

Q2.1 (d)

Q2.2 (c)

Q2.3 (b)

Q2.4 (a)

Q2.5 Answer true or false to each question below (each answer is 2 marks).

(a) DeepQA is a natural language processing system. TRUE

(b) A GPU is only able to process graphics data, in particular two dimensional matrices,

vectors and pixels. FALSE

(c) The real-world performance measure is a major telling factor in determining whether

or not it was worth the effort to develop a parallel solution. TRUE

(d) Amdahl’s law states the number of transistors per square inch on ICs doubles every 18

months. FALSE (that is Moore’s Law!)

(e) A CPU tends to support more threads than a GPU. FALSE

SECTION 3: Long Answers [40 marks]

3.1-3.3 These questions will be marked to award solutions that are more optimal and easier to read

with high results.

3.4 This is more an essay question. The students should explain the process or state machines that

would be utilized to implement modes 2 and 3 of the VCB device. Ideally it is expected that some

sample code should be provided to help express how parts of the system will be connected and also

how the timing will be managed.

 [40 marks]

