Review of EEE4084F 2012

- Lecture 1
- Nothing of Lecture 1 is examined
- Lecture 2
- Skip irrelevancies re quiz0 (slides 3-7)
- All the rest is relevant
- UML
- Parallel computing fundamentals
- Automatic parallelism
- Performance benchmarking, Trends
- Lecture 3
- Skip initial slides (1-9)
- Terms. Golden Measure
- Temporal & spatial computing
- Benchmarking
- Power
- Study suggestion:
- Think of ways to implement parallel vector scalar and cross products and measure the performance and other results of this
- Lecture 4
- All Relevant.
- Review of homework (scalar product)
- Parallel programming.
- Timing in C
- Important terms
- Parallel programming models: Data parallel model; Message passing model; Shared memory model; Hybrid model
- Know terms: Contiguous, Partitioned (or separated or split), Interleaved (or alternating), Interlaced
- Lecture 5
- Processor Architecture types
- Von Neumann; Flynn's taxonomy
- Memory access architectures
- Lecture 6, 7*, 8**, 9, 10
- Design of Parallel Programs
- The main steps:
- Understand the problem
- Partitioning (separation into tasks)
- Decomposition & Granularity
- Communications
- Identify data dependencies
- Synchronization
- Load balancing
- Performance analysis and tuning
- Lecture 8 additional points

- Very relevant:
- Cost of communication
- Latency, bandwidth, effective bandwidth (and related calculations)
- Blocking/non-blocking; synch/asynch
- Scope of communications
- Cloud computing (virtualization and other key technology factors)
- Lecture 9 additional points
- First part of lecture 9: GPUs & CUDA
- GPU issues and benefits
- Important CUDA-related terms (threads and blocks)
- Rest of lecture 9 relates to design of parallel programs (specifically: 5. data dependencies and 6. synchronization) which is relevant
- Lecture 9, 10 additional points cont.
- Don't need to know any specifics of cloud computing or how to program it; more know what it involves and its <u>service</u> approach
- No need to know details of virtulization, or what the different cloud computing models are, or detail of the specific services offered
- Should know about load balancing be able to explain what it means and how it can be performed.
- Lecture 11
- Discusses the parallel programming design patterns (i.e. slides 3-12 relevant)
- Ignore slides 13 and 14
- Slides 15 onwards relevant. Concerns terms: application accelerator, verification, validation
- Lecture 12
- All relevant recaps programmable logics, HDL and VHDL
- Lecture 13
- Skip slides 1-26
- Have a look over slides 27-
- Note you don't need to memorize details about these FPGA manufacturers or their products, but know at least:
- What does ACTEL focus on? (low power small packages)
- What does TABULA focus on? (space-time FPGA technology for very high capacity)
- Lecture 14
- Description of Reconfigurable Computing, why it is 'trendy'
- Dual processing issues
- Skip slides 14 onwards (these are only relevant in terms of knowing what sort of things are put into hardware)

• Lecture 15

- Know the very basics of Verilog coding.
- You might be asked to
- Represent a (simple) combinational logic circuit in Verilog, or
- Translate Verilog to VHDL, or
- Translate VHDL to Verilog
- A Verilog cheat sheet will be provided
- <u>Remember</u>: module, constants, wires vs. registers, data types, parameters, initial
- Lecture 16
- RC architectures relevant, also the determining factor whether a computer platform is or is not RC
- Recap of FPGAs
- Calculating speed of a combinational logic design, and comparing computing speed with a CPU
- Lecture 17
- RC architecture case studies
- All relevant, but you need only understand the general concepts; you don't need to remember specifics

(i.e. you won't be asked very specific things like does the L2 cache in the cell processor connect to the PPU or the EIB)

Lecture 18

- Ignore slides 1-13
- Amdahl's law relevant (slides 14-18)
- Know what is meant by BCE (base core equivalent) in terms of multiprocessor chip design
- (ignore the last slides about the calculator, no need to read the paper)
- Lecture 19
- All relevant
- Configuration architectures
- Nothing asked re Scott Hauck (1998) paper
- Other FPGA-based RC Building Blocks
- Memory types
- Digital logic modular design (slide 21)
- DMA, Latches & flip flops
- Lecture 20
- Start from slide 7
- DMIPS, Dhrystone, Whetstone, Coremark
- C → HDL automatic conversion
- Should know how to use the HandleC notation to write a C-style representation of a digital logic circuit
- Know techniques for clocking, synchronising components, passing control signals.
- Knowing your C logic operators (& | ^~) goes without saying

- Lecture 21 + textbook Ch4
- Reflections on the process.
- Discussion of how the *spiral model* would be actioned in the case of a HPEC / reconfigurable computer / digital design
- Key steps and stumbling blocks in the design process
- RAD approach applied to digital system development
- Common causes of project failure
- Causes of project success
- Chapters / Seminar Review
- EEE4084F Digital Systems
- Readings, Seminars & Chapters
- The landscape of parallel computing research: a view from Berkeley
- CH1: A Retrospective on High Performance Embedded Computing (HPEC)
- CH2 Representative Example of a HPEC System
- CH3 System Architecture of Multiprocessor System
- CH4 HPEC Development process & management
- CH5 Computational Characteristics of HPEC Algorithms and Applications
- CH13 Computing Devices
- Readings, Seminars & Chapters
- CH7 Analog-to-Digital Conversion
- CH9 Application-Specific Integrated Circuits
- CH14 Interconnection Fabrics
- CH24 Application and HPEC System Trends
- CH10 Field Programmable Gate Arrays
- Ch10 isn't included this year
- Readings, Seminars & Chapters
- Resources / Handouts:
- LECT01 Common Parallel Computing Terms _Required Reading_.pdf
- Resources / Homework & Class Activities
- EEE4084F Lecture 18 Class activity.pdf
- HandleC-Example.zip
- HandleC_Syntax.pdf
- Class activities (see Lecture Resources directory in the Vula resources for the course)
- Readings, Seminars & Chapters
- Resources / Readings
- Compton=Reconfigurable Computing A Survey of Systems and Software.pdf
- Hauck 1998=The Roles of FPGAs in Reprogrammable Systems.pdf NOT EXAMINED
- R01 Berkeley 2006 Landscape of Parallel Computing Research.pdf
- The Von Neumann Architecture.pdf

Pages of text book examinable

- Ch1 3-11; 13 (but for this chapter you only really need to read over from pp 3 to half-way though pg 5).
- Ch2 15-21; 24-27
- Ch3 29-35
- Ch4 41-45 + sect 4.4 66-69 (but 4.4 you can look over but no need for specifics)
- Ch5 73-78; 88-89; 96-101
- Ch7 149-154; 159-162; 164-166; 168-169
- Ch9 191-196; 200-201; 207 (from sec 9.8) -210 (inc. 9.9.3)
- Ch10 217-226
- Ch13 267-269; 271-272; 274; 276-278 (excluding 13.4.2.3 and 13.4.2.4)
- Ch14 283-285; 287-294
- Ch24 463-469; 473; 475-476

Berkeley paper (Seminar #0)

R01 Berkeley 2006 - Landscape of Parallel Computing Research.pdf

Relevant pages: pp 1-2 ; pp 3-8 (don't need to know what each of the 7 dwarfs are); pp 14-15 (composition of drawfs is relevant in terms of discussing dwarfs) excl. Sect 4.3; pp 20-22 (ignore 4.1.2); pp 44-45. Note that much of the content of this paper is covered in more detail in the textbook and lectures.