
Digital Systems
EEE4084F

FINAL EXAM

18 May 2010

3 hours

Examination Prepared by:
Simon Winberg

Last Modified: 11-May-2010

REGULATIONS

This is a closed-book exam. Scan through the questions quickly before starting, so that you can plan your
strategy for answering the questions. If you are caught cheating, you will be referred to University Court for
expulsion procedures. Answer on the answer sheets provided. Make sure that you put your student name and
student number, the course code EEE4084F and a title Final Exam on your answer sheet(s). Answer each
section on a separate page.

DO NOT TURN OVER UNTIL YOU ARE TOLD TO

Exam Structure

RULES
• You must write your name and student number on each answer book.
• Write the question numbers attempted on the cover of each book.
• Make sure that you cross out material you do not want marked. Your first attempt at any question will
 be marked if two answers are found.
• Use a part of your script to plan the facts for your written replies to questions, so that you produce a
 carefully constructed responses.
• Answer all questions, and note that the time for each question relates to the marks allocated.

EEE4084W: Final Exam (2010) Page 1 of 11

Section 1

Short Answers
(3x 12-mark questions)

[36 marks]

Section 2

Multiple choice
(5x 4-mark questions)

[20 marks]
pg 2 Pg 9 Pg 4

Section 3

Long Answers
(2x 22-mark questions)

[44 marks]
Pg 6

Appendices
&

Detachable answer sheet

Pg 8

Section 1 : Short Answers [36 marks]

Question 1
There are three general classes of system for carrying out electronic computation: 1) purely hardware (e.g., the
computation is fixed); 2) reconfigurable computer systems; and 3) software processor systems.

(a) Contrast the drawbacks and benefits of these three approaches mentioned above. Ensure your answer
provide one advantages and one disadvantage for each class of system [2x3 makrs = 6 marks].

(b) Explain the main determining characteristic that differentiates between computer platform being
considered “non-reconfigurable” and “reconfigurable”. [2 marks]

(c) Communication is a fundamental aspect in the design of parallel computers. Explain what is meant
by the terms “communication latency” and “effective bandwidth” [2 marks]. Briefly describe how
this effective bandwidth can be can be calculated (e.g., in the context of two computers linked via a
Gigabit Ethernet wired network) [2 marks].

[12 marks]

Question 2
Large scale microprocessor-based computer cluster may incorporate hundreds of computers, often comprising
networked computers that have either SMP processors architectures or Cell processors architectures (e.g., IBM cell-
based blade servers or PlayStation3 computers). Often, these cluster systems are programmed using a combination of
Pthreads and the Message Passing Interface (MPI).

(a) Provide two common examples of applications that run on these large-scale computer clusters. [2 marks]

(b) Briefly discuss the main differences between the design of an SMP processor and that of the Cell processor
[3 marks].

(c) When building a cluster for general use, a decision is often made to build the cluster using SMP processors
rather than Cell processors. Give three reasons why SMP processors are such a popular choice. [3 marks]

(d) Programming in MPI, and programming in Pthreads follow different approaches. Yet, to develop optimized
solutions for clusters of computers with SMP processors, programmers often end up using a combination of
both MPI and Pthreads. Surely it makes more sense, and gives better performance, if just one or the other
approach is used. Explain why in this kind of situation programmers often use a combination of MPI and
Pthreads. [4 marks]

[12 marks]

EEE4084W: Final Exam (2010) Page 2 of 11

Question 3

(a) The increase in GFLOPS has shown exponential growth, from the humble beginnings of computing. For
example, before the 1950s even 1MFLOP was unobtainable. Around what decade (1950s, 1960, 1970, 1980
or 1990) was an excess of 0.5GLOPS (i.e., 500MFLOPS) achieved for a processor? [1 mark]

(b) Reproduce the table below in your answer book, and use it to indicate what if the types of processing listed
below are either done typically on a front-end processor or on a back-end processor (place a cross in the
relevant column to show this). To save time, you can substitute the letter in brackets for the name of the
processing routine (e.g., 'D' for 'database processing (D)').

Processing type Front-end Back-end
Database processing (D)

Sampling ADCs (S)
Pulse compression (P)

Convolvers or FIR filtering (C)
Clutter mitigation (M)

[5 marks]

(c) Describe one way you can quantify the complexity of a high performance embedded computer (HPEC)
system, and one way you can measure the performance of a HPEC system. Mention units of quantification
(for example, the power of a system can be measured by how quickly the system converts energy into work;
the unit for power is the WATT). [4 marks].

(d) GPUs, for example the nVIDIA cards that support CUDA, are not appropriate for all types of application.
Briefly describe the nature of applications that GPUs are well suited to handle. [2 marks]

[12 marks]

EEE4084W: Final Exam (2010) Page 3 of 11

Section 2: Multiple Choice [20 marks]

Q1. What is the bisection bandwidth of a three-level tree network of crossbars shown below? (Note that

each crossbar's port has a bandwidth equal to 1).

Bisectional bandwidth = (a) 1 (b) 2 (c) 3 (d) 4 (e) 8

[4 marks]

Questions Q2 and Q3 refers to the Pthread code given in Appendix B
The Pthread program in Appendix B simply counts the number of times the value P comes up as
a random number.

Q2. Consider the program in Appendix B. The program is run 11 times on a Intel Core2 Quad computer

(which has four processors), using the command line parameter 1 (i.e., so that only one thread is
spawned). The first run is ignored, and the timing of the other ten runs are averaged, giving an
average execution time per run of precisely 1000ms (for 1 thread). It is calculated that the
initialization of each thread attribute and creation of each threads (i.e., lines 43, 44) take together
30ms to run for each thread created. Similarly, the join operation takes 18ms per thread. Assume it
takes 0ms for each thread to activate, and the rand() function does not do any synchronization. If the
program is run 11 times (ignoring the first run) with the parameter 4 (i.e., four threads are spawned)
determine the expected speed-up of the program (choose the closest answer below).

(a) 0.4 (b) 1.8 (c) 2.3 (d) 2.8 (e) 3.5
[4 marks]

Q3. Considering that the code in Appendix B is fairly representative of the type of program that would
run on a Intel Core2 Quad processor, how would you classify the Intel Core2 Quad according to
Flynn's taxonomy? Choose the most appropriate classification:

(a) SISD (b) SIMD (c) MISD (d) MIMD (e) None of Flynn's classifications fit.
[4 marks]

Q4. Choose the description that best describes the term “beamforming” in relation to HPEC applications.

(a) Beamforming is any kind of signal processing method that involves a sequence of stages in
which directional information is maintained through the entire process.

(b) Beamforming involves combining signals from multiple sensors to simulate one sensor with
enhanced directionality.

(c) Beamforming is simply a technique that allows you to focus data at a particular processing
element; it is equivalent to the way you can use a magnifying lens to focus sun rays.

(d) Beamforming is a signal processing model commonly used in HPEC design, it is a sequence of
stages where each stage inputs data, processes the data, and passes the data to the next stage.

(e) Beamforming is the process of converting analogue inputs (e.g., radar signals) into digital data
captured and filtered by the front-end which then relays relevant results to the back-end.

[4 marks]

EEE4084W: Final Exam (2010) Page 4 of 11

Crossbar Crossbar Crossbar Crossbar

Crossbar

Crossbar Crossbar

Q5. Answer true of false to each question below (each answer is 1 mark).

(i) A correlation between two identical data sets returns the value 0.
(ii) The 'golden measure' refers to a trusted baseline implementation of an algorithm to parallelize.
(iii) The modern trend in HPEC design is moving away from using COTS solutions.
(iv) The commonly used HPEC acronym “SWAP” means Stop Wait And Process.

[4 marks]

EEE4084W: Final Exam (2010) Page 5 of 11

Section 3: Long Answers [44 marks]

Question 1
This question relates to FPGA-based RC platforms. Figure 1 shows a
block diagram for a LUT used as a programmable block (PB) in a FPGA.

(a) What is meant by the term “configuration architecture” in relation
to an FPGA-based RC platform [2 marks].

(b) What is a LUT? And why do FPGAs usually have lots of LUTs
instead of the more fundamental logic gates (e.g., NAND gates)?
[2 marks]

(c) The Xilinx Virtex-6 comprises an architecture composed of two
types of configuration logic blocks (CLBs), namely SLICEM and
SLICEL blocks. Provide motivation for why the Xilinx designers
chose this approach instead of simplifying the design by having
one type of slice. You can comment on the difference between
SLICEL and SLICEM blocks if you think it aids your reasoning.
[5 marks]

(d) Usually a FPGA has many pins that are hard-wired to off-
chip hardware (e.g., the PCB might wire a FPGA pin
directly to a pin of an RS232 M-type connector as shown
in Figure 2). However, each PB might only have a few
inputs as Figure 1 shows. In addition, individual PBs can
usually be configured to be synchronous or asynchronous.
Clearly, Figure 1 is lacking some important details. If you
have not already done so, detach the answer sheet (the last
page of the question paper). The answer sheet shows a
FPGA that has only two PBs. Use the answer sheet to
visually describe how the 6 inputs and 2 outputs of the
FPGA could be directed to PBs, and how each PB can
individually be set as asynchronous or synchronous. Show interns of PB#1 – the other PB will have the same
implementation. (Note you don't need to show how the configuration flip flops C1-C6, CS1, CS2 and CO are
set/reset.) [13 marks]

[22 marks]

EEE4084W: Final Exam (2010) Page 6 of 11

Figure 1: a LUT within a PB of a FPGA.

Figure 2: FPGA pin hard-wired to RS232 connector

Question 2

This question concerns porting a program from standard C to the Handle-C style syntax that can be converted directly
to VHDL and used as a digital accelerator to speed-up processing. Imagine you are developing a parallel application
that runs on a FPGA platform. Your application has two parts: 1) a digital accelerator device called PPG, and 2) a soft
processor that does other work and sends parameters to the PPG. The digital accelerator is called the Parallel Pulse
Generator (or PPG); all it does is generate a digital binary waveform, which oscillates between high for a certain time
and low for a certain time as shown in Figure 3. The C code listing below explains how the signal could be generated
if it was running on a processor. Figure 3 shows a block diagram indicating how the PPG would connect up to a soft
processor on a FPGA.

// C function to generate a digital pulse
void PPG (int L, int H)
{
 while (1) {
 out = 0; // set the out line low
 delay_microseconds(L);
 out = 1; // set the out line high
 delay_microseconds(H);

 }
}
...
PPG(100,200); // generate signal shown in Figure 3

Figure 4 shows the block diagram layout that you are
planning to use. As the figure shows, a soft processor
connects to the PPG via two 16-bit PIO lines and two
single bit control lines (i.e., start and enable). If enable is
low, the PPG does nothing but wait for a start pulse.
When a positive edge is sent over start (i.e., a start pulse)
the PPG immediately reads and stores the L and H inputs
and then starts generating the signal sent on the out
output. As soon as enable is set back to low, the PPG
stops producing an output signal (it can leave the out pin
at either low or high) and returns to waiting for a start
pulse.

Complete the following steps:

(a) The MK1M block shown in Figure 4 converts the 200MHz master clock into a slower 1MHz SCLK clock to
make it easier to generate output pulses that are multiples of microseconds. Explain how the MK1M
component could be implemented to produce this SCLK clock. Your answer needs some explanatory text; you
can include a circuit/block diagram if you think it would aid your explanation. [6 marks]

(b) Appendix A provides Handle-C style syntax, a C syntax that similar to the syntax used by many C to HDL
automatic conversion programs. Develop a C function, using the provided Handle-C syntax, to implement the
PPG entity. That the inputs and outputs to PPG entity need correspond to parameters of the C function (the
parameters obviously need to be declared using appropriate datatypes listed in Appendix A). Note SCLK is a
single bit input, and out a single bit output, of the PPG. [12 marks]

(c) Having two input 16-bit lines, L and H seems a bit wasteful in terms of interconnects used on the FPGA;
surely the PPG entity could be modified to have just one 16-bit input port (e.g., called X). Describe how you
could rework the implementation of the PPG so it still provides the same functionality, but you get by with
just one 16-bit input. [4 marks]

[22 marks]

END OF EXAMINATION

EEE4084W: Final Exam (2010) Page 7 of 11

Figure 3: Signal L=100us H=200us
0

0.2

0.4

0.6

0.8

1

1.2 200us 100us

Figure 4: Block diagram showing the PPG and interconnects

Soft
Processor PPG

L 16

H 16

start

enable

SCLK

MCLK
(200MHz) MK1M

out

RCA-F connector (port for
coaxial cable to transfer
output signal)

Appendix A:

C to VHDL translation tool language specification
(loosely based on the Handle-C syntax)

The C to VHDL translation tool supports a large portion of the ANSI C syntax standard. The supported
datatypes and modifiers are listed in the table below. The bit, byte, and short datatypes are commonly used,
together with the in and out modifiers. As in ANSI C, the unsigned, short and long keywords can be used as
datatypes if used alone (e.g. int ix) or as a modifier if used with another dataype (e.g. unsigned int ux).
Floating point values (e.g. float, double) are not supported.

Support for sized arrays but not for pointers or unsized arrays
Please note pointers are not supported as either parameters or as variable declarations. Arrays are however supported.
Examples: SUPPORTED NOT SUPPORTED
 void test (int p [10]); void test (int* p); OR void test (int p[]);

int array1[10]; int* array1; OR int array1[];

Datatype sizing
Int and unsigned (or unsigned int) datatypes can have their their size (in number of bits) modified. All other datatypes (bit,
bool, nibble, byte, char, unsigned char, llint, ulint, etc) cannot have their size modified.

The syntax for arbitrary sized declaration is as follows:

type size name;

Type: the datatype, namely: int, unsigned or unsigned int
Size: a positive integer (between 1 and 128)
Name: name of the variable

Examples: SUPPORTED NOT SUPPORTED
 int 8 signedbyte; char 8 signedbyte;
 int 8 signedbyte; char 8 signedbyte;

int 6 intarray[10]; int* 6 intarray;
unsigned 11 xu; unsigned char 11 xu;
int 7 xu; byte 7 xu;

Arbitrary sized integers/unsigned variables can be used as are normal integers / unsigned values. Only the least significant
bits are processed/copied; for example (int 2 x = 4; // x is set to 0 as the two least significant bits of integer 4 are both 0.)
Example:

unsigned int 7 x = 20;
int y = 10;
x += 1; // x changed to 21
x = x + y; // x changed to 31
y = x; // y set to 31

See the next page for list of datatypes.

EEE4084W: Final Exam (2010) Page 8 of 11

Datatypes
C -> VHDL Translator
datatype/modifier

Default
size

ANSI-C Standard
equivalent keyword

Comments

_in N/A Indicate input parameter (use only with function
parameters)

_out N/A Indicate output parameter (use only with function
parameters)

enum 1 to 4 bits enum Translator limited enums limited to sets of 16 items

bram N/A Use as datatype or as modifier (e.g. bram int x = 10;)
Forces data into block RAM. “bram” without type =>
“bram int”

sram N/A Use as datatype or as modifier (e.g. sram int x = 10;)
Forces data into SRAM if available; otherwise into
BRAM. “sram” without type equates to “sram int”

dram N/A Use as datatype or as modifier (e.g. dram int x = 10;)
Forces data into DRAM or external ram if available;
else into BRAM. “dram” without type equates to “dram
int”

ext N/A Use as datatype or as modifier (e.g. ext int x = 10;)
Forces data into external memory if available;
otherwise into BRAM. “ext” without type equates to
“ext int”

rom N/A Use as datatype or as modifier (e.g. rom int x = 10;)
Forces data into read only memory if available;
otherwise into BRAM. “rom” without type equates to
“rom int”. Do not confuse keyword “rom” with ASNI
keyword “const” -- const a variable cannot be changed
(e.g., “const bram y = 5;” means y is located in BRAM
but cannot be changed by the C program)

int 32-bit int Signed 32-bit value

short 16-bit short Signed 16-bit value
unsigned 32-bit unsigned Unsigned 32-bit value

unsigned short 16-bit unsigned short Unsigned 16-bit value
char 8-bit char Signed 8-bit value (-128 to +127)

unsigned char 8-bit unsigned char Unsigned 8-bit value (0 to 255)
byte 8-bit unsigned char Unsigned 8-bit value (0 to 255)

nibble 4-bit N/A Unsigned 4-bit value (0 to 15)
bit 1-bits N/A Single bit (0 to 1)

bool 1-bit N/A Single bit (0 to 1) equivalent to bit
long 32-bit long Signed 32-bit value

unsigned long 32-bit unsigned long Unsigned 32-bit value
long long 64-bit long long Signed 64-bit value

unsigned long long 64-bit unsigned long long Unsigned 64-bit value
llint 64-bit long long Signed 64-bit value

ulint 64-bit Unsigned long long Unsigned 64-bit value

EEE4084W: Final Exam (2010) Page 9 of 11

Appendix B:

Pthread Code

Line Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

/* @file countrand.c
 A pthread program to count the number of times a certain number
 comes up using rand.
 Compile on Linx/Cygwin using: gcc -o countrand countrand.c
*/
/* Library includes */
#include <stdio.h>
#include <time.h>
#include <sys/types.h>
#include <pthread.h>

/* Global constants and variables */
const int RAND_RANGE = 1000;
int numthreads;
int N = 5000000; // number of random numbers to process
int found[4] = {0,0,0,0};
int P = 101; // number to search for

/** The thread function for parallel computation */
void* mythread (void* arg)
{
 int id = (int)arg; // determine the ID for this thread
 int num = N / numthreads; // see how many times this thread must loop
 int i,r;
 for (i=0; i<num; i++) {
 r = rand()%RAND_RANGE; // generate a random number
 if (r == P) found[id]++; // see if pattern is found
 }
}

/** Entry point to the program. */
int main (int argc, char** args)
{
 int i;
 pthread_t th[4]; // thread variables
 pthread_attr_t attr[4]; // thread attributes
 // initialize the random number generator
 srand(time(0));
 // Indicate number of threads that are going to be used
 if (argc<=1) return printf("Please give number of threads.\n");
 else numthreads = atoi(args[1]);
 // Initialize the thread attributes and spawn the threads
 for (i=0; i< numthreads; i++) {
 pthread_attr_init(&attr[i]);
 pthread_create(&th[i], &attr[i], mythread, (void *)i);
 }
 // Join all the threads
 for (i=0; i< numthreads; i++) pthread_join(th[i],NULL);
 // print out the result
 printf("Found matches (using %d threads) = %d\n", numthreads,
 found[0] + found[1] + found[2] + found[3]);
}

EEE4084W: Final Exam (2010) Page 10 of 11

Your student number:
Please fill in your student number above in case this pages falls out your answer book.

ANSWER SHEET 1
ANSWER TO SECTION 3 Q1(d)

I1 I2 I3 I4 I5 I6

FPGA Boundary

Off-chip area

CS2

FFs each set to 1 or 0 to
indicate if PB is synchronous or
asynchronous

PB #1LUT Static
memory

COCS1

PB #2

Same implementation
as PB#1

FF to specify if PB1 out connects to
O1 or to O2 (PB2 connects to the
one PB1 isn't connected to)

O1

O2

Inputs

O
utputs

PB1
out

Configuration flip
flops. Add more if
needed.

C2 C2 C3 C5C1 C6

PB2
out

3

clock

clock

	
	Section 2: Multiple Choice [20 marks]
	Section 3: Long Answers [44 marks]

